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ABSTRACT 

 

Legacy software systems in the Department of Defense (DoD) have been 

evolving and are becoming increasingly complex and are becoming increasingly complex 

while providing more functionality. The shortage of original software designs, lack of 

corporate knowledge and software design documentation, unsupported programming 

languages, and obsolete real-time operating system and development tools have become 

critical issues for the acquisition community. Consequently, these systems are now very 

costly to maintain and upgrade in order to meet current and future functional and 

nonfunctional requirements. 

This thesis proposes a new interoperability model for re-engineering of old 

procedural software of the Multifunctional Information Distributed System Low Volume 

Terminal (MIDS-LVT) to a modern object-oriented architecture. In the MIDS-LVT 

modernization acquisition strategy, only one Computer Software Configuration Item 

(CSCI) component at a time will be redesigned into an object-oriented program while 

interoperability with other unmodified CSCIs in the MIDS-LVT distributed environment 

must be maintained. Using this model, each legacy CSCI component can be redesigned 

independently without affecting the others. 
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I. INTRODUCTION  

During the arms race, software designers were under tremendous pressure to 

speed deployment of systems despite increasing complexity of those systems. Shipping 

delays were common because software designers had to manually design, implement, 

integrate, and test these complex software systems without the support of automated 

software engineering tools.  Most critical deficiencies were discovered late in the 

integration and testing phase. With these pressures, acquisition managers routinely 

waived the delivery of full design documentation.  In some cases, the government 

received the executable software without source code and documentation.  

These complex systems are characterized by having heterogeneous processors 

connected by heterogeneous busses. Such systems required many choices regarding 

programming languages, development environments, and real-time operating systems, 

which were developed by multiple contractors to fulfill the specific requirements for 

these systems.  Despite these complexities and challenges, the Department of Defense 

(DoD) has successfully developed a great number of important software systems. 

Over the years, these legacy software systems have been evolving and are 

becoming increasingly complex while providing more functionality. The shortage of 

original software designs, lack of corporate knowledge and software design 

documentation, unsupported programming languages, and obsolete real-time operating 

system and development tools have become critical issues for the acquisition community. 

Consequently, these systems are now very costly to maintain and upgrade in order to 

meet current and future functional and nonfunctional requirements.  

With the shrinking DoD budget, the acquisition community cannot afford to 

disregard these legacy systems and develop brand new substitute systems from scratch.  

A risk and cost reduction approach is to be developed in order to maintain and upgrade 

such systems effectively. 

To date, the work done on the modernization of legacy, distributed embedded 

systems has been minimal. The majority of current methods concentrate on business and 

information applications. These approaches deal with the decomposition of monolithic 
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systems, decoupling of user interface, database management, and identifying reusable 

components, which may not be applicable for complex, embedded systems. 

In this thesis, we focus on the re-engineering of old procedural software of the 

Multifunctional Information Distributed System (MIDS) Low Volume Terminal (MIDS-

LVT) into a modern, object-oriented architecture in order to meet emerging requirements. 

The MIDS-LVT program is a joint cooperative international program that consists of five 

nations: United State, France, Germany, Italy, and Spain. The MIDS-LVT system is a 

complex distributed real-time embedded system that provides a joint and allied 

interoperable Link-16 tactical digital data and voice communication link among air, 

ground, surface, and subsurface platforms, i.e., F/A-18, F-16, EF-2000, and Patriot 

Missile.  

The MIDS-LVT system is a product family that consists of four variations or 

configurations, LVT (1), LVT (2), LVT (3), and MIDS on Ship (MOS). It has eight 

Computer Software Configuration Items (CSCIs), which are distributed among a set of 

processors. These CSCIs are Core, Tailored Input/Output (TIO), Message (MSG), 

Tactical Air Navigation (TACAN), Subscriber Interface Army/Army Data Distribution 

System Interface (SIA/ADSSI), Navy Subscriber Input Output (NSIO), Fighter Data Link 

Input Output (FDLIO) and Voice. Depending on the configuration, these CSCIs perform 

parallel and serial tasks to fulfill the system functions.  

During the MIDS-LVT development phase, multiple contractors from the five 

nations developed hardware and software components. For software applications, each 

contractor developed his own CSCI in an independent (a unique) language, Real-Time 

Operating System (RTOS), and software support environment. The implementation 

languages were independently chosen and different CSCI’s use different languages. The 

Core CSCI was developed in FORTRAN and assembly languages. The TIO CSCI was 

developed in ADA 83 and C languages. The TACAN CSCI, MSG CSCI, and Voice 

CSCI were developed in C language. The SIA/ADDSI CSCI, NSIO CSCI, and FDLIO 

CSCI were developed in FORTRAN language.  Consequently, the integration of the 

software subsystems was very complex.  
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Hardware obsolescence and inaccurate software design documentation are 

concerns in the MIDS-LVT program.  Any change in the underlying hardware 

architecture is translated into a major change in all the associated software components 

because developers were unable to separate software functions from low-level 

interactions with the hardware or other software components. The details of hardware 

dependent communications and control mechanisms are combined with software 

behaviors. Therefore, any change in the hardware configuration requires significant 

modifications in the related software components. Without accurate software design 

documentation, this software and hardware interaction could become critical in our effort 

to re-engineer this old procedural software into a modern, object-oriented architecture. 

The MIDS-LVT modernization acquisition strategy is based on a time driven, risk 

reduction approach.  In this approach, when required, only one CSCI at a time will be 

redesigned into an object-oriented program while interoperability with the other 

unmodified CSCIs in the MIDS-LVT distributed environment will be maintained. 

Currently, only the Core CSCI is being considered for redesign into an object-oriented 

program. 

This thesis proposes a new interoperability model for the MIDS-LVT system, 

which provides a high-level abstraction for the CSCI interfaces and interactions.  Using 

this model, we can develop a new framework for upgrading other individual legacy 

CSCIs into modern software architectures. 

The proposed interoperability model consists of interface, protocol, and temporal 

specifications. These specifications are critical for system interoperability but have not 

been sufficiently identified in practice. The proposed model is expected to formalize the 

interoperability requirements for the MIDS-LVT system and to identify and improve the 

component performance. After being applied in the modernization of the Core CSCI 

components, the model is extendable to the other CSCI components with corresponding 

requirement abstractions.  

The interface specification consists of a set of Application Programmer’s 

Interfaces (API), which act as the interfaces among the CSCIs’ inter-processor 
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communication (IPC) which interact and cooperate in the MIDS-LVT distributed 

environment.  The API is used to hide the design decisions and implementation details of 

how to interface with specific communication devices.  The decoupling of the CSCIs’ 

internal activities from their external application relationships allows us to understand 

how the CSCI components interoperate.  

The protocol specification is a strict constraint mechanism or policy that controls 

the legal ordering of the sequence of messages involved in the interaction of two CSCIs.  

The use of the protocol specification provides for a safe and verifiable information 

exchange between the CSCIs.  

For temporal specification, we are interested in the ability of the systems to 

schedule the functions that provide and consume the data for the interaction between two 

CSCIs.  For CSCIs to interoperable, the temporal requirements of both CSCIs need to be 

compatible. 

In this thesis, our research approach includes a thorough review of current real-

time, distributed technology and interoperability techniques. We analyze the current 

MIDS-LVT requirements, interfaces, designs, test documentation, and source code to 

gain a thorough understanding, and then a complete abstraction of its interaction, 

protocol, behavior, and timing constraints.  Once we gain this information, we specify, 

model, and design by using object-oriented, design patterns and the Unified Model 

Language (UML).  

In our design approach, we make no assumptions about the new specific language 

or RTOS required for the MIDS-LVT.  We will also make no assumption about the new 

hardware architecture in terms of a specific set of microprocessors, memory structures, 

data buses, and I/Os.  However, our approach assumes that the MIDS-LVT hardware has 

sufficient CPU speed and memory space to support emerging future functional 

requirements.  

One long-term goal in the MIDS-LVT program is to implement the components 

with real-time CORBA when the related technologies become mature.  The intention is to 

develop interchangeable modules provided by competing vendors while achieving 
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interoperability with various platforms. The thesis should allow seamless integration with 

real-time CORBA technology. 

This thesis is organized into the following chapters.  Chapter II provides a brief 

overview of real-time and distributed systems, real-time operating systems, inter-

processor communication, interoperability, and object-orient design.  Chapter III presents 

the MIDS-LVT software architecture, the interoperability model, the API’s specification, 

and the protocol specification.  Chapter IV presents the design and implementation of the 

APIs and protocols for the MIDS-LVT.  Chapter V presents the test results of the API 

latency time. Chapter VI presents the extension of the model for other CSCIs. Chapter 

VII provides the thesis conclusions and future work. 
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II. BACKGROUND 

Since the 1960s, DoD and industry have been making efforts towards 

economically providing sufficient computing power by using microprocessor 

architectures to solve complex computational application problems in fields such as 

strategic air defense, weather forecasting, flight simulation, telecommunication, and 

molecular biology.  A common solution to these types of software application problems 

is to use parallel processing and to distribute the application over several processors. In 

the parallel and distributed processing environment, these types of systems exhibit 

substantial concurrency. Consequently, they are very complex to specify and design.  

This chapter provides some background information on the MIDS-LVT system 

and the design challenges of migrating the MIDS-LVT into modern technology. We will 

also present a list of potential technologies for migrating distributed real-time systems 

such as the MIDS-LVT. 

 

A. MIDS-LVT SYSTEM 

The MIDS-LVT system is a complex distributed real-time embedded system that 

provides a joint and allied interoperable Link-16 tactical digital data and voice 

communication link among air, ground, surface, and subsurface platforms as shown in 

figure 2.1.  Link-16, using the MIDS-LVT system, represents a major improvement in 

data link communications over the legacy data links, i.e., Link-11 and Link-4A.  The 

following are Link-16 features: 

• Jam resistance 

• Security 

• High data rate 

• Multiple users 

• Secure digital voice 
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• Relative navigation 

• Precise participant location and identification 

• A message set that supports a wide range of mission functions and data 

 

 

 

 

 

 

Figure 2.1. Tactical data shared over Link-16 

 

1. System Architecture 

The MIDS family architecture is defined by the terminal system segment 

specification, terminal interface control documents, module performance and interface 

specifications, and the CSCI performance and interface specifications. A module is 

defined as either a shop replaceable unit (SRU) configuration item or a line replaceable 

unit (LRU) configuration item. The MIDS hardware architecture is based on publicly 

available standards.  It uses version E of the standard electronic modules (SEM-E).  Each 

module in the digital subsystem is interconnected using a commercial standard Versa 

Module Eurocard bus (VMEbus).  Each module in the radio frequency (RF) subassembly 

is interconnected for control and reporting using a standard RS-422 data bus.   

The internal buses in the MIDS-LVT are black and red.  The red bus is a VMEbus 

where most CSCIs interact and perform non-secure activities.  The black bus is an RS-

422 that dedicated for secure tasks such as signal generation and cryptography functions. 

 
Host 

 
MIDS-LVT
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The MIDS family includes the modules and CSCIs for the LVT (1), LVT (2), 

LVT (3), and MOS configurations or variants, and ancillary LRUs.  The main terminal 

unit (MTU) for the LVT (1) consists of nine SEM-E modules and three non-SEM-E 

modules. The SEM-E modules are: 

• Data Processor (DP) / Avionics MUX (AMUX) 

• Tailored Processor (TP) / Ground MUX (GMUX) 

• Voice Processor (VP) 

• Signal Processor / Message Processor (SMP) 

• Discrete / Receiver-Transmitter Interface (RTI) 

• Receiver-Synthesizer (R/S) RF / Receiver-Synthesizer digital (2 R/Ss per 

LVT(1) MTU) 

• Exciter-CPSM / Interference Protection Features (IPF) 

• TACAN Digital / TACAN RF 

The non-SEM-E modules are: 

• Power Amplifier (PA)- Antenna Interface Unit (AIU) 

• Chassis - Harness (includes Motherboard and Front Panel) 

• Internal Power Supply (IPS) (includes Battery) 

The MTU of the MIDS_LVT (1) includes five operational Computer Software 

Configuration Items (CSCIs): Core software, Tailored I/O software, Signal/Message 

processor software, TACAN software, and Voice software as shown in figure 2.2. The 

Core CSCI provides the Link-16 message and protocol capabilities and executes on the 

data processor (DP) lamina. The Tailored I/O CSCI provides host-related functions and 

host-network communication capabilities. The host-related functions execute on the 
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tailored processor lamina and the host-network communication capabilities execute on 

the avionics MUX (AMUX) lamina and ground MUX (GMUX) lamina. The 

signal/message processor CSCI provides the signal generation and cryptography 

functions and executes on the signal/message processor (SMP) module. The TACAN 

CSCI provides the TACAN capability and executes on the TACAN digital lamina.  The 

voice CSCI provides an LPC-10 and CVSD voice capability and executes on the voice 

processor (VP) module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. LVT (1) Software and hardware interconnection 

 

The LVT (2), LVT (3), and MOS variants are roughly subsets of the LVT (1), 

with relatively few additions as shown in table 2.1.  For the LVT (2) variant, the AMUX, 

the TP, the voice processor, one receiver-synthesizer, and the TACAN module are 

removed from the MTU.  The tailored I/O software, the TACAN software, and the voice 

software are also deleted. ADDSI software is added to provide an Army-unique X.25-

based host interface. This software executes on the modified-for-Army-GMUX lamina.  

For the LVT (3) variant, the GMUX, the AMUX, the TP, the voice processor, the 

discrete, the TACAN, and the PA-AIU are removed from the MTU.  A LVT (3) discrete 

MSG CSCI 
(SP/MP) 

CORE 
CSCI 
(DP)

TIO CSCI 
(TP/AMUX/
GMUX)

VOICE 
CSCI 
(VP) 

TACAN 
CSCI 
(TACAN)

Host 
 

RF HW 

Red Bus (VME) 

Black Bus (RS-422) 
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lamina, a LVT (3) 1553 MUX lamina, and a LVT (3) PA-AIU module are added to the 

MTU. The tailored I/O software, the TACAN software, and the voice software are 

deleted.  LVT (3) interface software (FDLIO) is added and executes on the avionics 

MUX lamina. 

For MOS variant, the GMUX, the AMUX, the TP, the discrete, the TACAN, and 

the PA-AIU are removed from the MTU. The tailored I/O software and the TACAN 

software are deleted. The MOS interface software (NSIO) is added and executes on the 

avionics MUX lamina. 

 
 LVT(1) LVT(2) LVT(3) MOS 

DP X X X X 

AMUX X   X 

LVT(3) AMUX   X  

TP X    

GMUX X    

VP X    

SP/MP X X X X 

Discrete X X   

LVT(3) Discrete   X  

RTI X X X X 

R-S X X X X 

Exciter X X X X 

IPF X X X X 

LVT(2) GMUX  X   

TACAN X    

PA X X  X 

LVT(3) PA   X  

IPS  X X  

Core CSCI X X X X 

TIO CSCI X    

MSG CSCI X X X X 

TACAN CSCI X    

Voice CSCI X   X 

ADSSI/SIA CSCI  X   

NSIO CSCI    X 

FDLIO CSCI   X  

 

Table 2.1. MIDS-LVT Hardware/software configuration 
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2. Re-engineering Effort 

Figure 2.3 shows the Core and TIO CSCIs interconnection in our re-engineering 

and assessing effort.  In the current MIDS-LVT legacy design, the CSCIs do not invoke 

other CSCIs functions directly. All the Inter-processor communications among the CSCIs 

are done through sending and receiving data to and from their shared memories.  The 

current CSCIs interaction is done at very low-level.  Consequently, these low-level codes 

were embedded within many software modules.  In our re-engineering design, we 

propose a set of APIs which will act as interfaces to implement the CSCIs’ inter-

processor communication and that will hide the design decisions and implementation 

detail of how to interface with specific communication devices. The new re-engineering 

designed CSCI should act and feel the same to other unmodified legacy CSCIs. 

In our current modernization acquisition strategy, the Core is the first CSCI that 

will be redesign into an object-oriented architecture. The Core CSCI was inherited from 

Joint Tactical Information Distribute System (JTIDS) and was developed in Fortran and 

assembly language beginning in the early 1980s.  After the many years of software 

changes, the current software architecture of Core CSCI is very fragile and unable to 

accommodate new complex requirements.  Simple changes in the Core CSCI may require 

large software development efforts and extensive regression testing which is costly for 

the users.  

 

 

 

 

 

 

Figure 2.3. LVT (1) Software interconnection for re-engineering 

 

CORE CSCI 
(FORTRAN &
Assembly) 

TIO CSCI 
(ADA 83 
and C)

Red Bus (VME) 
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B. DISTRIBUTED REAL-TIME SYSTEMS 

Designing software for distributed real-time systems is very complex due to 

several aspects of the distributed and real-time characteristics that are not applicable non-

distributed real-time systems.  Specifically, distributed real-time systems must implement 

true concurrency, which means that they must support the simultaneous execution of 

several high-level tasks.  They are extremely complex to specify and develop because 

many interdependent operations must execute on different processors at the same time.  

When the system is large and consist of several variations, the interactions resulting from 

simultaneous operations make it very difficult for developers to understand the 

implications of their design decisions.  

This section provides an overview of real-time systems, distributed systems, and 

RTOS. 

 

1. Real-Time System 

A real-time system (RTS) is a concurrent system that has performance deadlines 

on its computations and actions [Ref. 2]. Real-time systems have wide spread use in 

military, industrial, and commercial applications.  A RTS usually consists of a RTOS, 

I/O, and several sensors and actuators.  RTS is classified as hard or software. A hard RTS 

has time-critical deadlines that must be met. In a soft RTS, missing the deadline is not 

desirable but it will not cause a mission failure if it does not occur too often. 

RTS applications software is designed to operate in a real-world environment. Its 

have several characteristics that distinguish them from other software systems. The 

MIDS-LVT has the following characteristics: 

a. Embedded System 

A RTS can be an embedded system. In this case, the RTS is a component 

of a larger hardware/software system. Often there is no direct human interface. The RTS 

only responds to external stimulus via sensors and transducers. For example, the MIDS-
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LVT is part of the host platform (F/A-18, F-16, and F-15) communication and navigation 

subsystem. 

b. Timing Constraint 

A RTS has timing constraints. For example, the MIDS-LVT must process 

events within given time slots.  Failure to complete the task might be catastrophic for the 

system. 

c. Real-Time Control 

A RTS often involve real-time control. It makes decisions and produces 

control signals based on input data without any human intervention. For example, the 

MIDS-LVT synchronizes to the network by adjusting its internal time base to the data 

received from the host and network. 

d. Time-Driven System 

A RTS is a time-driven system. Its actions are driven primarily by periodic 

tasking or the arrival of time epochs rather than by the arrival of aperiodic events.  If 

tasks are not complete by the time of the arrival of the next time epoch then the system 

fails to meet its time requirement.  This is not acceptable in mission critical systems. The 

MIDS-LVT must process all of its data before the arrival of the next time epoch.  

e. Reactive System 

Many RTS are reactive systems.  They are event driven and must respond 

to external events. For example, when the system is driven by the occurrence of external 

events (clock alarms, signals) the system must react to these events.  The system does not 

read its input or control when such inputs occur.  It simply reacts to their occurrence. 

 

2. Distributed System 

Distributed systems can range from small and simple to large and complex, 

usually running on separate computers that are in geographically different locations [Ref. 

3].   For example, a program on one machine that is at distant location is able to interact 
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with a different program on a second machine through an underlying data 

communications mechanism.  In large and complex distributed embedded systems such 

as the MIDS-LVT, the programs dispersed over a set of distributed processors that 

connected by internal global busses. 

There are two models for distributed systems: asynchronous and synchronous.  

a. Asynchronous Model 

An asynchronous distributed system model consists of a set of processors 

that run at their own speeds, do not share a common clock, do not have synchronized 

clocks, and do not share any memory.  All communication among the processors occurs 

by message-passing and there is no predictable upper bound on the time it takes for the 

communication network to deliver a message.  Predicting the latency of the network and 

the resource on a distributed system that you do not control can be very difficult. Due to 

the latency issues, an asynchronous distributed model is not used for designing hard real-

time system. 

b. Synchronous Model 

A synchronous distributed model assumes that the upper bounds on the 

communication delay and computation latency are always known.  This system consists 

of a set of processors that share a common global clock that synchronizes and coordinates 

the common tasks among the different processors to meet the strict timing constraint 

required by the system.  

Synchronous distributed application is a concurrent application.  It may 

execute in an environment consisting of multiple heterogeneous processors that are 

connected together by heterogeneous busses.  The MIDS-LVT is a system of this type. 

 

3. Real-Time Operating System 

A Real-Time Operating System (RTOS) provides special services for real-time 

programming applications [Ref. 2].  These special services include: rapid response within 

knows bounds to external and internal events, interrupt handling, task scheduling and 
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dispatching, response to timer events, and provision for mutual exclusion.  Examples of 

typical RTOSs are INTERGRITY (Green Hills Software), QNX (QNX Software 

Systems), RT-March (CMU), RTMX O/S (Open BSD + Real-Time extensions), Solaris 

(Sun), Spring Kernel (U. of Massachusetts), VRTX (Mentor Graphics), VxWorks (Wind 

River Systems), and many others. 

 

C. BENEFITS OF REAL-TIME DISTRIBUTED APPLICATIONS 

Distributed processing has several advantages and benefits over a single processor 

environment. 

 

1. Load Balancing 

In a mission critical system, load balancing is crucial for the success of the system 

operation. In distributed environment, the overall system load can be shared among 

several CPUs. 

 

2. Improved Response Time 

If the system has many external requests, these requests can be assigned to 

different processes working concurrently. In this case, the external requests can be 

processed in a more timely fashion. 

 

3. More Economical 

With the rapidly declining costs and rapidly increasing performance of 

microprocessors, a distributed solution is cheaper than a centralized solution. 
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4. Improve Scalability 

A given application is scalable. It can be configured in different ways by selecting 

an appropriate number of CPUs to support the requirements. 

 

5. Extendable 

If the system requires more performance, it can be extended by adding more 

CPUs to prevent system overload. In this case, new, additional functionality can be 

allocated over the extended set of processors. 

 

D. CHALLENGES OF DEVELOPING REAL-TIME DISTRIBUTED 

APPLICATIONS 

Despite the advantages and benefits provided by a distributed environment, 

developing this type of application is non-trivial task.  There are many different design 

trends associated with the possible solutions, but no current solution is able to resolve all 

the problems and issues.  

In the following section we will discuss the challenges relates to implementing a 

RTS. 

 

1. Concurrency and Schedulability 

Dijkstra recognized the growing number of applications, including that real-time 

and distributed systems were concurrent in nature, in which several activities were 

logically occurring in parallel [Ref. 15].  The issues of concurrency and schedulability are 

strongly related. Concurrency is the simultaneous execution of multiple sequential chains 

of actions.  Schedulability is the selection of task to execute next from among all tasks 

that are capable of executing.  Schedulability analysis tries to determine whether a system 

composed of many tasks can meet its entire deadline. For instant, a single processor 

system can do only one single thing at a time and, therefore, it must implement a 
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scheduling policy that controls when the different tasks execute.  For a large and complex 

application, execution on single processor system may too slow and, thus, not sufficient 

to support hard real-time requirements. The application that takes a long time to run may 

be speeded up by dividing the work of the application among separate processes that can 

run concurrently on different processors. Designing an application in a distributed 

environment required careful partitioning, coordinating, and scheduling tasks on different 

processors to achieve true concurrency. 

Uncontrolled concurrency can be dangerous.  For example, one process reads an 

object while the object is being written concurrently by another process.  The first 

process might see the object while it is in a temporarily inconsistent state and might fail 

for this reason.  To guard against such problems, software designers normally use 

synchronization mechanisms, which are primitive operations provided by the RTOS to 

ensure the correct synchronization of the processes.  In a heterogeneous distributed 

environment such as the MIDS-LVT where the system consists of many types of RTOSs, 

the synchronization mechanism provide by the specific RTOS may not interoperable with 

the other RTOSs. 

  

2. Timing Constraint 

A RTS depends not only on the logical results of the computations, but also on the 

times at which those results are produced.  For a hard RTS, it must produce functional 

results by a specific deadline.  Otherwise there may be catastrophic consequences for 

both the system and the environment it operates in.  Often it is impossible to predict with 

when particular events will occur, what their order of occurrence will be, and how long 

they will last.  For the MIDS-LVT, all tasks must be completed before the end of each 

time slot, which is 7.8125 millisecond.  Missing this deadline may be critical depending 

on type of data that it’s processing. For example, if the unprocessed incoming data of the 

MIDS-LVT are related to navigation, by missing this deadline, the host may not be able 

to correlate the MIDS-LVT navigation solution with others avionics sensors data. This 
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will affect the host’s ability to perform its mission and its safety.  To guard against this 

condition, each CSCI satisfy its own timing constraints before the end of slot interrupt.   

In general, timing constraints must be expressed, enforced, and their violations 

handled [Ref. 2].  Commonly, the timing constraint expression can take the form of start 

times, deadlines, and periods for activities.  The timing constraints are related to 

execution time and its enforcement requires predictable bounds on activities. 

All computing systems usually share resources serially to achieve a required 

function.  Therefore, designing of real-time systems should be concerned with specific 

timing, scheduling, and execution ordering constraints that all processors must obey. 

 

3. Dynamic Behavior 

An important aspect of many RTSs is their dynamic behavior during run-time.  

The dynamic behavior of a system must be predictable.  This is crucial for many safe-

critical and high-reliability systems, such as avionics systems (MIDS_LVT), medical 

systems, and nuclear power plants.  

 

4. Correctness and Robustness 

A system is correct when it does the right thing all the time [Ref. 2].  If the system 

does all the right things under both planned and unplanned circumstances then such a 

system is robust.  These are non-functional real-time requirements that systems such as 

the MIDS-LVT must satisfy. 

 

E. INTER-PROCESSOR COMMUNICATION 

In a homogeneous RTOS environment, the inter-processor communication (IPC) 

mechanisms for exchanging data elements between processes that reside on different 

processors can be easily implemented using the underlying RTOS services. IPC 



20 

mechanisms can be implemented in various ways, including message passing, shared 

memory, and signaling. 

 In distributed environment, the system normally consists of several 

heterogeneous RTOSs. In this case, the underlying RTOS does not support an IPC 

mechanism across its RTOS boundary.  For example, if program A using RTOS A’ and 

program B using RTOS B’ are to interact. These two programs cannot use their 

underlying RTOS mechanisms directly to communicate to each other.  For instant, shared 

memory or mutual exclusion semaphores that are created by RTOS A’ will not be 

accessible from program B using RTOS B’.  

In this section we discuss different IPC techniques used in homogenous RTOS 

distributed embedded environment. Our goal is to exploit the features of these IPC 

techniques for heterogeneous environments such as the MIDS-LVT. 

 

1. Shared Memory 

The shared memory is an unbuffered communication technique. The unbuffered 

data is accessed through shared memory, which need mutual exclusion (locks) to read 

from and written to.  Shared memory enables multiple processors to share a data area and 

to transfer data among themselves.  The shared memory can be implemented in several 

ways depending on the RTOSs and requirements of the applications.  

In the MIDS-LVT, the shared memory is a physical memory that the processors 

can access.  The hardware does not provide the locks and synchronization for accessing 

the shared memory.  The locks must be implemented in software. Our shared memory 

data structure consists of a data transfer block area, a pointer area, and a handshake area. 

The processors using the shared memory must determine and provide restrictions as to 

the content, organization, and usage of the data area in the shared memory. The 

processors must also synchronize the use of a shared memory.  Consequently, thoughtful 

programming, usually involving events or signals, is required to enable several 

processors to update a shared memory. 
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The shared memory is the most common form of and perhaps the fastest inter-

processor communication mechanism, especially for transferring large structures between 

multiple CSCIs of hard real-time systems. However, they require careful synchronization 

or subtle bugs can occur in the complex software. 

 

2. Pipe 

The pipe is a buffered communication technique, which allows processes to 

communicate. A Pipe is a first-in first-out (FIFO) buffer, which enables concurrently 

executing processes to communicate data: the output of one process (the writer) is read as 

input by the second process (the reader).  Communication through pipes eliminates the 

need for an intermediate file to hold the data. 

In most RTOSs, pipe is a shared memory that is unnamed. Pipes are used to send 

and receive data between two processes in the processor. Pipe data may arrive at any 

time.  When used in hard real-time systems, the designer must determine upper bounds 

on the number of produced and consumed messages to enable guarantee of temporal 

properties.  Pipes may not operate in a heterogeneous operating system environment.  

 

3. Distributed Shared Memory 

Distributed shared memory (DSM) provides transparent reads and writes of 

shared data in a networked environment [Ref. 6].  The functionalities of a DSM system 

are built to provide an illusion of a global virtual memory and to support concurrent 

writes on different nodes.  For MIDS-LVT to work correctly using this technology, the 

CSCIs or at least the parts responsible for interaction must be implemented using the 

DSM.  

 

4. Signals 

In inter-process communications, a signal is an intentional disturbance in a 

system.  The signals are designed to synchronize concurrent processes, but they can also 
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be used to transfer small amounts of data.  Signals are usually processed immediately and 

provide real-time communication between processes. 

Signals are also referred to as software interrupts because a process receives a 

signal similarly to how a CPU receives an interrupt.  Signals enable a process to send a 

“numbered interrupt” to another process.  If the active process receives a signal, the 

intercept routine is executed immediately and then the process resumes execution where 

it left off. 

In the MIDS-LVT, we use hardware signals such as EOS and DTI to synchronize 

the CSCIs that reside on different processors. Normally the signal’s mechanism that is 

provided by the RTOS cannot operate across heterogeneous operating system boundaries.  

 

5. Alarms 

Alarms enable programs to send signals or to execute subroutines at specific times 

or at specific intervals.  The program can arrange for the signal to be sent at a specific 

time of the day, after a specific interval has passed, or sent periodically. 

A cyclic alarm is most useful for providing a time base within a program. This 

greatly simplifies the synchronization of certain time-dependent tasks.  For example, a 

real-time simulation might allow one second for an instrument to update. A cyclic alarm 

signal could be used to determine when to update the display. 

The advantage of using cyclic alarms is more apparent when multiple time bases 

are required. Each function could be given a cyclic time to process the data.  The alarm 

can be used for external control and to synchronize the CSCIs’ communication. 

 

6. Mutual Exclusion 

In concurrent systems, more than one process might want to access the same 

resource simultaneously. For example, if two processes need to communicate with each 

other through a common shared memory, it may be necessary to synchronize the 

processes so that only one updates the shared memory at a time. Semaphore is a 
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mechanism that is used to synchronize concurrent processes that are accessing critical 

section is mutually exclusive. Dijkstra provided a solution to the classical mutual 

exclusion problem by using binary semaphore [Ref. 15].  The binary semaphore has two 

values: zero and one. When the semaphore is set to one, it means that the resource is free. 

When it is decremented to zero, the resource is already acquired by other task. In certain 

applications, we may want more that one process to read the shared resource, providing 

that no more than one process is writing into the critical section at the same time. 

 

F. OBJECT-ORIENTED METHODOLOGY 

As mention earlier, real-time design is a complex process, primarily because of 

the added constraints that must be met, i.e., temporal, resource, load balance, scheduling, 

and inter-processor communication. Because of these constraints, the current practice for 

building a successful RTS often involves art as much as it does science [Ref. 5]. In 

improving the effectiveness of designing real-time system, Object-Oriented (OO) has the 

potential and it is becoming a popular option.   

Object-orientation is a software development paradigm that allows the engineer to 

view and model the world as a set of interacting objects. The promise benefits of OO are 

software reuse, improved system partitioning, and clearly specified interfaces. 

While OO has been successful in designing commercial software, what is not well 

understood is how the technology can be best applied to large complex real-time systems. 

We highlight a few of the essential concepts underlying OO analysis and design 

techniques for real-time systems. 

 

1. Abstraction 

Abstraction focuses on the essential aspects of an entity and ignores or conceals 

less important or non-essential aspects.  An OO approach encourages the construction of 

abstractions, both of the real-world of the system and of the problem. It is a fundamental 

tool in handling the complexity of large software systems. 



24 

 

2. Encapsulation/Information Hiding 

An OO technique provides a more obvious and natural mechanism to limit access 

to shared data by encapsulating or hiding information. OO provides a single construct 

called a class that encloses both data and functionality. It only exports a necessary subset 

as its public interface, keeping the rest private. This approach minimizes the impact of 

requirement changes and reduces the risk of abusive implementation. It also reduces the 

complexity of developing large software systems. 

 

3. Inheritance 

Inheritance is a mechanism provided by OO approaches to enable class 

refinement and reuse. Reuse is achieved by inheriting data and functions from one class 

into another. 

 

4. Polymorphism/Dynamic Binding 

The ability of a real-time system to behave within a predictable and consistent 

tolerance range is often the foundation for success.  With the exception of Ada95, 

polymorphism and dynamic binding impose a predictability problem in some object-

oriented language (C++ and Java), since binding can take different amounts of time for 

different objects due to object hierarchy and overheads.  Most real-time systems resort to 

early or static binding, trading improved predictability for lower flexibility.  This is a 

compromise made in order to ensure that the real-time constraint can be met.  

 

G. DESIGN PATTERNS 

A design pattern is a generalized solution for a commonly occurring type of 

problem [Ref. 7]. A pattern permits the reuse of a successful design. Each pattern 

describes a problem, which occurs repeatedly in the environment, and then describes the 
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core of the solution to that problem.  A pattern usually does not give the detailed 

information for a particular solution. The user of the pattern must adapt the pattern to a 

particular case at hand and supply the missing details not given the pattern.  

Design patterns can be recognized at many levels of scale and in many 

disciplines. In computer science, large-scale patterns usually used to represent 

architecture or models and small-scale patterns represent common arrangements of 

programming language constructs.  By means of design patterns knowledge of good 

software design can be documented and the experience gained within software projects 

widely distributed.  With design patterns, a common design vocabulary is introduced, 

simplifying communication between software engineers.   

Four design patterns, façade pattern, decorator pattern, strategy pattern, and proxy 

pattern were found interesting for designing our API for the MIDS-LVT. 

 

1. Façade Pattern 

A facade pattern provides the interface to the object.  It defines a higher-level 

interface that make the object easier to use, i.e., abstract out the complex detail 

implementation of that object.  This pattern provides layer support so we can define the 

API as an entry point to the shared memory for each CSCI. 

 

2. Decorator Pattern 

A decorator pattern is the same as wrapper pattern. It encloses an object of one 

class in another class that “decorates” the original objects (as a border around a window). 

It can be used to adapt an existing API to fit another API specification. 

 

3. Strategy Pattern 

A strategy pattern defines a family of algorithms. It encapsulates each one and 

makes them interchangeable.  This pattern allows the algorithms to vary independently 
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from the clients that use them. We can use this pattern to represent the communication 

protocol. The protocol policy can be extended for a child without modifying the parent’s 

protocol algorithm.  It provides one size fits all interfaces without forcing a one algorithm 

to fits all implementation. 

 

4. Proxy Pattern 

A proxy pattern provides a placeholder for another object to control the access to 

it.  This pattern is useful to representing device I/Os such as serial, Ethernet, and MIL-

STD-1553 communication of the MIDS-LVT.  

 

H. GENERATIVE PROGRAMMING 

An interesting emerging approach that has the potential to deal with designing 

complex families of RTSs is generative programming [Ref. 1].  Generative Programming 

(GP) is a new software engineering paradigm that focuses on modeling a family of 

products rather than a one-of-a-kind systems.  GP techniques enable the automated 

generation of a product from existing components with a given requirement specification. 

The GP approach is based on the generative domain model, which consist of three 

elements: 

– Specifying family members, i.e., systems for specifying the MIDS-LVT 

– Implementation components, i.e., MIDS-LVT components that can be 

assembled 

– Configuration Knowledge, i.e., the knowledge of assembling the MIDS-LVT 

based on the specification 

In GP, feature modeling is used to capture important feature and variation points 

that are easily missed as the basis for deriving the implementation components for the 

system family.  This notation has many advantages over notation such as the Unified 

Modeling Language (UML).  
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Czarnecki and Eisennecker [Ref. 1] recognized the importance of capturing 

production knowledge of the software systems. They point out that having only the 

production software for a system without the design knowledge and an understanding of 

the specific design process used has contributed to the difficulty and high cost of software 

evolution and maintenance.  This is true in every major military software application. 

 

I. CORBA TECHNOLOGY 

Common Object Request Broker Architecture (CORBA) [Ref. 9] is an open 

systems standard developed by the Object Management Group, which allows 

communication between objects on heterogeneous platforms. It is the de facto standard 

for integrating and deploying distributed applications in heterogeneous computing 

environments. 

  

1. Properties 

CORBA has three key properties that allow systems to achieve interoperability 

among multiple vendors.  

a. Heterogeneous Environment 

CORBA is designed for platform and operating system independence. 

Today, well over 50 different operating systems support CORBA. 

b. Language Independent 

CORBA is designed for language independence.  CSCIs implemented in 

one programming language can communicate transparently with other CSCIs 

implemented in different languages.  CORBA interfaces are standard for C++, Java, Ada, 

C, COBOL, Smalltalk, and Lisp. 

c. Location Independent 

CORBA applications are location independent.  CSCIs do not need to 

know each other’s physical location on the network or bus.  
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2. Object Request Broker 

Object Request Broker (ORB) is the essential element of the CORBA technology. 

The ORB is a middleware or software bus that sits between a distributed application and 

the underlying communications transport layer.  Distributed objects are accessed through 

the ORB.  The ORB is responsible for tracking the objects’ locations and managing all 

communications with an object.  The ORB has the capability to resolves the 

incompatibilities that may exist between two systems’ native data representation.  The 

most important feature of an ORB is its ability and responsibility in selecting the 

communication channel, including communication over shared memory in the same 

processor, across a backplane if multiple processors are part of the same system, or using 

TCP/IP across a local-area network.  When TCP/IP is used to access a remote object, 

ORBs communicate with each other using the Internet Inter-ORB Protocol (IIOP) 

standard.  The use of IIOP ensures interoperability between different vendors’ ORBs. 

 

3. Interface Definition Language 

CORBA achieve programming language independent by employs a language 

independent interface definition language (IDL).  The IDL specifies the interface to 

distributed objects.  An IDL compiler simplifies application development by generating 

source code stubs and skeletons that make remote object invocation appear local.  An 

application invokes the CORBA object by calling the client stub.  Likewise, the skeleton 

provides a native language wrapper for the servant code that implements a distributed 

object. 

CORBA can integrate legacy application components by defining an IDL that 

corresponds to its interface.  The wrapper code can then be provided to map between the 

skeleton generated by the IDL compiler and the legacy interface.  The main benefit of 

this approach is that any language for which an ORB is available can utilize the IDL 

interface.  For example, new software for the MIDS-LVT written in C++ can easily 

access code written in FORTRAN. 
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4. Real-Time/Minimum CORBA 

Recognizing the potential use of CORBA for connecting and integrating 

embedded applications, the OMG has produced two specifications.  These two 

specifications were specific for embedded and real-time systems: Minimum CORBA and 

Real-Time CORBA.  

a. Minimum CORBA 

The Minimum CORBA standard defines a subset sufficient for most 

embedded applications and well suited for resource-constrained environments. The 

omitted features represent a trade-off between usability and conserving resources. This 

new specification is design for small-embedded systems, i.e., TV, microwave oven. 

b. Real-Time CORBA 

The Real-Time CORBA specification extends CORBA so that it can be 

used to build predictable real-time distributed systems. Obtaining this predictability 

typically requires that all the CSCI components behave predictably.  This is a perquisite 

for ensuring real-time performance.  For Real-Time CORBA to be successful in real-time 

systems, its behavior must be predictable. 

Real-Time CORBA addresses this by providing mechanisms to control the 

use of the processor, memory, and network resources.  Specifically CORBA: 

– Allows mapping of priorities and scheduling down to the underlying RTOS 

tasks/threads. 

– Allows controlling the amount of memory resources to be used in a 

predictable fashion. 

– Allows the application to select between available and make choice about the 

amount of sharing of the connections that occurs. 
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After reviewing several studies on this technology, we concluded that real-time 

CORBA still not mature enough for use in a hard real-time system [Ref. 10] [Ref. 11] 

[Ref. 12].  The main concerns are its large footprint, performance, predictability and 

reliability.  One long-term goal in the MIDS-LVT program is to implement the 

components with real-time CORBA when the related technologies become mature.  

In figure 2.4, we show how the MIDS-LVT would map into CORBA technology 

by replacing our API with CORBA IDL. The external security and host applications will 

require adapters or wrappers to communicate with the MIDS-LVT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. MIDS-LVT architecture in CORBA 
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J. INTEROPERABILITY TECHNIQUES 

Interoperability concerns the ability of two or more systems or software 

components to communicate and cooperate with each other.  The interoperability 

problems can arise from many situations i.e., the integration of a new system with legacy 

systems or the reuse of legacy software components that need to be connected in order to 

satisfy new requirements. We can view interoperability at different levels of abstraction.  

A component is a lower level while a system is the highest level of abstraction. 

Abstraction refers to what parts of the program’s structure and behavior are 

hidden and what parts are visible.  The highest level of abstraction is the model of the 

behavior of the whole system, which includes no structure information.  A lower level of 

abstraction is the model in which the structure of the modules is hidden and only the 

interaction of the modules is visible.  Below this level, there is the model of the code of 

individual units. An even lower-level model makes the machine code visible, but that is 

not very useful for purposes of determining interoperability. 

Interoperability problems arise not only in a homogeneous environment, but also 

in a heterogeneous environment.  For instant, we may want a CSCI that written in 

language A with RTOS B to interact with a CSCI written in language C with RTOS D.  

In this case, problems may occur at both syntactic and semantic levels.  That is, the two 

CSCI may compile without an error but the functionality of the interoperation may not be 

what is expected. 

A software component takes on many meaning depending on the people involved 

in the software development environment.  In general, components could be functions, 

objects, or subsystems or software modules that consists of multiple functions.  In this 

thesis, we use the term software component as an implementation software unit of an 

object-oriented or procedural language and which can be composed with other units [Ref. 

1].  Our CSCI is composes of many software components and can be further composed 

with other CSCIs to form a system.   

To understand interoperability, we reviewed the existing techniques for 

determining software interoperability including Zaremski and Wing’s specification 
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matching [Ref. 13], Polylith system [Ref. 14], CORBA IDL [Ref. 9], Software Adaptor, 

Interoperable Component Model (ICM) [Ref. 4], and Object-Oriented Model for 

Interoperability (OOMI) [Ref. 8].  Each technique provides features that are unique in 

what it requires to achieve interoperability. Some techniques consider only syntactic level 

interoperability while others consider both syntactic and semantic level of 

interoperability.  Among all the techniques that we reviewed, CORBA IDL was the only 

technique that supports both procedural and object-oriented language. Similar to other 

middleware techniques, CORBA IDL supports interoperability only at the signature level.  

With the exception of the OOMI, all methods are fine-grained approaches for defining 

components and their interactions.  One area that none of the techniques addressed is the 

temporal requirement, which is an important feature that is required by all hard real-time 

systems.  

Our goal is to exploit the features provide by these various research efforts and to 

construct a new interoperability model for modernizing the MIDS-LVT.  Our model 

shows the CSCIs’ interaction in a distributed embedded environment. Our model 

addresses the interoperability problem at coarser granularity than the component level.  

In our interoperability model, each CSCI consists of interface, protocol, and 

temporal specifications. The interface is comprised of methods (API), which acts as the 

interfaces for CSCIs to interact and cooperate in the MIDS-LVT distributed environment.  

The protocol is the sequence of messages involved in the interactions that occur between 

the CSCIs.  The temporal is the timing requirement and constraint in these interactions.  

In chapter three of the thesis, we describe in detail our interoperability model. 

 

F. SUMMARY 

In this chapter, we introduced the MIDS-LVT system and its design challenges 

and presented a list of technologies that the MIDS-LVT can use in its modernization to 

achieve its interoperability and maintainability goal.  

One important message we would like to point out is that developing portable, 

reusable, and efficient distributed real-time embedded software is not a trivial task.  
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Many reasons contribute to this complexity including heterogeneity, communication and 

computation latency, synchronization, coordination, concurrency, and schedulability of 

common tasks to achieve system requirements.  

CORBA is emerging as a promising tool in the distributed real-time embedded 

environment. The benefits promised by CORBA (abstraction, heterogeneity, etc.) are 

appealing in many application domains, including real-time embedded system such as the 

MIDS-LVT. Unfortunately, CORBA was not designed for real-time distributed 

applications.  The performance, predictability and reliability of current available ORBs 

are still not mature for use in hard real-time systems such as the MIDS-LVT.   Therefore, 

new ORBs still need to be designed, implemented, and tested before the MIDS-LVT can 

use it. 

Current interoperability techniques and models do not fit our modernization 

approach for the MIDS-LVT.  In our approach, only one CSCI at a time will be 

redesigned into an object-oriented program while interoperability with other unmodified 

CSCIs in the MIDS-LVT distributed environment will be maintained.  None of the 

current interoperability models addresses our problems. 

For the purpose of this thesis (limited in this thesis), we are not addressing all the 

issues that have been identified in this chapter.  We propose an interoperability model 

that will allow us to migrate one MIDS-LVT CSCI at a time into an object-oriented 

program while maintaining interoperability with the unmodified legacy CSCIs.  This is 

accomplished through using the API, protocol, and temporal specifications.  The API will 

allow us to separate the CSCI’s internal activity from its external relationships. The 

protocol will provide us with a strict constraint mechanism and policy to control the legal 

ordering of the sequence of messages involved in the interaction of two CSCIs.  The 

temporal specification will provide us with the timing requirements and constraints for 

the interactions of the MIDS-LVT CSCIs. 

In Chapter III, we will present the specification and the design of the API.  
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 III. SPECIFICATION AND MODEL 

This section gives an overview of the new MIDS-LVT software architecture, 

interoperability model, and describes its features and underlying design.  

 

A. MIDS-LVT SOFTWARE ARCHITECTURE 

When designing the new MIDS-LVT software architecture, we followed a sound 

software engineering principle, which is to decompose the software into multiple layers 

so that systems can be reused and easily deployed. We used layers to facilitate 

component-based software. Software components can reside in different logical layers 

and be separated by reliable interfaces. Components adhering to the appropriate interface 

can easily be assigned to any given layer.  That is, the top layer does not send messages 

to the bottom layer, and vice versa.  Instead, the top layer sends messages to the adjacent 

layer and the adjacent layer sends to the next layer until the messages reach the bottom 

layer.  For distributed systems, the use of layers is important to the overall operation and 

flexibility of the system as it allows components to be physically dispersed across a set of 

processors.   

The structure of the architecture framework is shown in figure 3.1.  We will show 

how the MIDS-LVT is mapped into the different layers or tiers. Our architecture 

framework consists of five layers. Layer number one represents the hardware of the 

system, i.e., CPUs, buses, and devices.  The second layer is the board support product 

abstraction, which includes device drivers and unique libraries required for the devices. 

The third layer is the RTOS and its facilities.  The fourth layer is our API for the MIDS-

LVT application.  The top layer is our system application software.  This is the highest 

level of abstraction.  

The key benefits of this software architecture are: 

– It maximizes the use of commercial products.  

– It isolates the domain application from the underlying hardware through 

multiple layers. 
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– It provides for a distributed processing environment through the use of API to 

provide software application portability, reusability, and scalability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. MIDS-LVT software structure 

 

In figure 3.2, we show the top-level software architecture view of the MIDS-LVT.  

The software architecture represents a high-level abstraction of the system. The UML 

diagram shows five CSCIs that reside on the MIDS-LVT (1) and a hardware wrapper 

class.  Each CSCI class represents a large concept in the application domain.  The CSCI 

is not an object nor a function but a package of classes, associations, operations, events, 

and constraints that are interrelated and have a well defined interface specification. In the 

MIDS-LVT (1), these CSCIs are the Core, the TIO, the MSG, the Tacan, and the Voice. 

Each CSCI consists of many software components.  A component is a software unit with 

sufficient specification for composition and interoperation with other components.  

The Hardware Wrapper class encapsulates the real-world hardware devices. It is 

defined as an abstract class, with no direct instances. This abstract class contains 

interfaces that may be replaced or extended by a specific concrete class. These interfaces 
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shield the designer from the internal complexity of the real-world hardware devices, i.e., 

shared memory, the Ethernet, the MIL-STD-1553 Bus and the RS-422. 

 

Figure 3.2. Top-Level software architecture 

 

1. CSCI Architecture View 

Figure 3.3 shows the CSCI class architecture that consists of aggregation and 

inheritance features for several specific classes.  Our approach here is to provide the 

parent class with the necessary methods for management and control while allowing the 

child classes to share the methods defined by their parents.  For example, when an 

exception is to occur in one of the child classes, the child class may not have a handler if 

it is not defined.  In our design, the child class always has the ability to share exception-

handling mechanisms inherited from the parent class.  The child component class will 

inherit all basic methods and attributes from the parent class.  As many child components 

as needed should be defined to meet the CSCI requirements.  One important point is that 

we want the parent class to have the ability to control and manage the child classes.  The 

class data messages should be designed into the abstract data type (ADT) to better 

support the modification.  This is an important feature for object-oriented programs 

because the ADT hides implementation details. 

HW WrapperMIDS-LVT

MSG CSCI CORE CSCI TIO CSCI TACAN CSCI VOICE CSCI



38 

 

CSCI

Component Class

1..n

Sub component Manager Utility Class Child Component Class

As many as required
by the Component class

 

Figure 3.3. Generic CSCI architecture 

 

In figure 3.4, we show a high-level view example of the TIO CSCI mapping with 

our generic CSCI architecture. The TIO CSCI consists of three major CSCs: the Tailor 

Process (TP), the Avionics Control Process (ACP), and the Ground Control Process 

(GCP).  The TP CSC is the base class for communications, built-in-test (BIT), 

navigation, boot, etc. Specifically, it defines the exception-handling mechanisms for all 

child classes. The ACP CSC is responsible for filtering messages and communicating 

with hosts that communicate via MIL-STD-1553 and 3910 buses. The GCP CSC is 

responsible for filtering messages and communicating with hosts that communicate via 

Ethernet and X.25.  In this example, we show one class - TPFilter. The TPFilter class 

converts data between various hosts’ navigation formats and the Core CSCI’s navigation 

data format.  This class inherited exception-handling mechanisms from the parent TP 

class. The TPFilter class is the parent for two others classes – TPFilterBIT and 

TPFilterNavA.  TPFilterBIT class filters BIT data before sending it to the host. 

TPfilterNavA class filters navigation data for platform A before sending it to the host.  
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Other classes can be extended from the TP CSC class to support the TIO CSCI 

requirements. The TPManager class provides control and management functions for the 

TP CSC. The TPUtilities class is a collection of free subprograms.  In C++, TPUtilities 

are classes that only provide static members and static methods. 

 

Figure 3.4. TIO CSCI architecture 

 

2. Hardware Wrapper 

The Hardware Wrapper class encapsulates the real-world hardware devices that 

exist in MIDS-LVT system. We use the information hiding principle to hide the design 

decision of how to interface to the specific I/O device. Our approach is to provide a 

virtual communication interface layer in order to hide the device-specific implementation 

details.  If the software designer decides to replace the hardware device with a different 

device, which has the same overall functionality, the content of the communication object 
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will need to change. However, the virtual communication interface representing the 

operation as shown in figure 3.5 remains the same.  

In the case of a shared memory, the communication device driver interface layer 

is not necessary since we can access the physical memory from the virtual 

communication interface directly without going through the specific device driver.  For 

instance, every commercial MIL-STD-1553 Bus device has its own device driver, which 

represents the Communication Device Driver Interface. The virtual communication 

interface is represented by our API, which provides all the services that are needed within 

our applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Communication layer interface 

 

In figure 3.6, we show subclasses of the hardware wrapper, i.e., memory devices, 

communication devices, and others. Each device can be further extended to a specific 

type of hardware component with its additional unique interfaces, attributes, and methods 

as required. 
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Hardware Wrapper

Memory Devices Communication Devices others

 
 

Figure 3.6. Hardware wrapper class 

 

As shown in figure 3.7, the current MIDS-LVT inter-processor communications 

are conducted through shared memory, i.e., Core/MSG, Core/Voice, and Core/TIO.  The 

shared memory consists of several data structures for the CSCIs to interact and exchange 

information.  Other communication mechanisms include the MIL-STD-1553 (TIO/Host), 

the Ethernet (TIO/Host, Core/TE, and TIO/TE) and the RS-422 (MSG/RF subassembly).   

We are extending the memory devices subclass to many specific memory types 

such as shared memory, Direct Memory Access (DMA), and reflective memory as shown 

in figure 3.8.  The memory device subclasses inherit common methods from the memory 

devices, i.e., basic read, write, and initialization methods.  
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Figure 3.7. MIDS-LVT communication structure 
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Figure 3.8. Memory devices class 
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B. INTEROPERABILITY MODEL 

As complex real-time distributed systems, each CSCI cannot be independently 

developed and delivered as a plug-and-play software subsystem without extensive 

consideration of software interoperability.  

In figure 3.9, we propose an interoperability model that is specific for the MIDS-

LVT. This model consists of an interface specification, a protocol specification and a 

temporal specification. Based on our assessment of the current interoperability 

techniques, the MIDS-LVT CSCIs’ interface specifications must be compatible at the 

level of signature and behavior, communication protocols, and temporal properties for 

MIDS-LVT CSCIs to be able to interact successfully. 

 

 

 

 

 

 

 

Figure 3.9. MIDS-LVT interoperability model 

 

1. Interface Specification 

Generally, an interface is a description of a set of possible operations that a client 

CSCI may request services through that interface. In object-oriented programming, an 

interface is a defined signature of methods and properties that can be implemented by a 

particular class. As a developer, if you were to implement the interface on your particular 

class you would need to provide all the methods and properties as defined by the 

signature.  Failure to meet the interface specification would result in compilation errors.  

In our model, each CSCI should have a well-defined interface to the other CSCIs 

in the system. Each interface specifies the form of all the interactions and the information 
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flow across the CSCI boundaries but does not specify how the CSCI is implemented 

internally.  Each CSCI can then be redesigned independently without affecting the others. 

The interface specification is represented by a set of APIs, which act as interfaces 

to facilitate CSCI interaction and cooperation in a distributed heterogeneous 

environment. The API provides a simple programming interface, which shields the 

software designer from the detail complex implementation of proprietary device drivers 

and RTOS facilities. As a result, changes and unsupported proprietary software are 

controlled to minimize the impact of the application software. 

The CSCI defines the signature for each API method – the return type and the 

parameter types – supported by the CSCI.  The behavior of the CSCI includes the role it 

plays and the pre and post-condition of each API method.  For systems that use shared 

memory as the inter-processor communication mechanism, an interface specification is 

defined by a set of generic API that separate the specific detailed implementations that 

allow the CSCIs to interact with the other CSCIs through the shared memory.  This 

allows us to define a clear separation between the behavior and the interaction of the 

CSCIs. 

 

2. Protocol Specification 

In general, protocol is a description of a set of mutually agreed upon conventions 

and procedures that govern what data to exchange and how to exchange.  The interaction 

among the CSCIs can be accomplished by using communication protocols.  Figure 3.10 

shows a simple example of the MIDS-LVT interaction between the Core and the TIO 

CSCI.  Record is viewed as a protocol, not a single message send from the TIO to the 

Core CSCI.  The record protocol may consist of multiple messages. 

The CSCIs interaction patterns can be modeled as client/server, peer/ peer, or 

multiple roles as shown in figure 3.11.  In client/server model, one CSCI is always 

sending messages, and the second CSCI is always receiving messages.  However, in peer 

to peer, the CSCI may act as a server at certain times and then act as a client at other 

times. 
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In our interoperability model, the communication protocol is defined as the 

sequence of messages involved in the interaction and cooperation of the two CSCIs.  If 

the communication protocol between two CSCIs is not compatible, the CSCIs cannot 

interoperate.  The use of the protocol provides a safe and verifiable information exchange 

between the CSCIs. It can be viewed as a strict constraint mechanism that controls the 

legal ordering of message and how and which messages can interact among the CSCIs. 

The protocol specification can be modeled using a finite state machine. 

 

 

 

 

Figure 3.10. MIDS-LVT record protocol 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. CSCI interaction patterns 

 

3. Temporal Specification 

Temporal properties are domain specific requirements. As the correctness of a 

real-time system depends not only on correct functions but also on correct timing, the 
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the temporal properties in our model, we are specifically interested in the ability of the 
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system to schedule the functions that provide and consume the data for interaction 

between each set of two CSCIs.  For instance, when CSCI A requests processing data 

from CSCI B, the temporal requirement may require the output data from CSCI B to be 

made available to CSCI A within 100 microseconds after the request is submitted. In 

order to match the temporal properties, we must guarantee the availability of the data 

every time.  

 

C. LOW LEVEL PROTOCOL SPECIFICATION 

This section provides a detail explanation of the protocol currently used for 

communication in the legacy system. This protocol will be encapsulated in the APIs in 

Section E of this chapter. The APIs will decouple the application from the protocol and 

enable other protocols such as real-time CORBA to be substitute in the future without  

the need for additional changes to the application. 

 The data transfer between the Core CSCI and the TIO CSCI will be via shared 

memory. The Data Processor’s VME shared memory contains two shared memory 

regions for the TIO CSCI to the Core CSCI messages.  The Tailored Processor’s VME 

shared memory contains a single shared memory region for the Core CSCI to TIO CSCI 

messages.  Each CSCI will write messages to the other’s shared memory via the VME 

bus. Each CSCI will read messages from the other CSCI into its own local memory.  

Each shared memory will occupy a contiguous region of physical memory.  

The shared memory region consists of a Handshake Word, Pointer Words, and 

Data Transfer Blocks (DTBs) as shown in figure 3.12.  A handshake word will be used to 

coordinate the transfer. The pointers are the offsets from the starting address of the shared 

memory region to the each DTB or message.  A maximum of seven pointers is supported 

by the legacy systems. The DTBs are the actual message buffers. 
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Figure 3.12. Shared memory region architecture 

 

1. Handshake Word 

The first region is the Handshake Word.  The format of the Handshake Word is as 

follows: 

 

 

 

 

Field READ/WRITE (RW) 

Type: Coded 

Value: 0 = Receiver Finished Reading 

  1 = Sender Finished Writing 

 

Before writing to a shared memory region, the sender must make sure the 

READ/WRITE bit is set to Receiver Finished Reading. When the sender finishes writing 
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to a shared memory region, the sender must set the READ/WRITE bit to Sender Finished 

Writing. 

Conversely, before reading from the shared memory region, the receiver must 

make sure the READ/WRITE bit is set to Sender Finished Writing. When the receiver 

finishes reading from a shared memory region, the receiver must set the READ/WRITE 

bit to Receiver Finished Reading.  This handshake must be performed every slot even if 

the sender has no DTB to write to the shared memory region and receiver has no valid 

DTB to read from the shared memory region. 

 

2. Pointers 

The second section of the shared memory region contains pointers to the DTBs in 

the shared memory region. These pointers are word offsets from the absolute VME 

starting address of the shared memory region. Each pointer is 16 bits.  The presence of a 

non-zero pointer indicates that a valid DTB is present at that location.  The sender of the 

DTBs writes pointers after the DTBs have been written to the shared memory region. 

This enables the receiver to know the starting location of each DTB in the shared 

memory region.  The receiver of the DTBs zeros pointers after the DTBs have been read 

from the shared memory region. 

 

3. Data Transfer Blocks 

The last section of each shared memory region contains the DTBs. DTBs are 

contained in the shared memory region in consecutive memory locations with no gaps 

between DTBs. A words count is provided in the header of each DTB to specify the 

length of the DTB. Message identification is also specified in the header of each DTB. 

 

D. TEMPORAL SPECIFICATION FOR THE PROTOCOL 

The temporal specification for the protocol for data transfer between the Core 

CSCI and TIO CSCIs can be divided into two phases as shown is figure 3.13: 
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Phase 1: Core I/O 

– After receiving and processing the End Of Slot (EOS), the Core reads DTBs 

from the TIO-to-Core shared memory regions and writes DTBs to the Core-

to-TIO shared memory regions 

 

Phase 2: TIO I/O 

– After receiving and processing the Data Transfer Interrupt (DTI), the TIO 

reads DTBs from the Core-to-TIO shared memory region and writes DTBs to 

the TIO-to-Core shared memory regions. 

 

Phase 1 and phase 2 must not overlap in time. This is accomplished as follows.  

At the beginning of each time slot (period), the Core CSCI performs its I/O processing 

(with the TIO CSCI) and sends a Data Transfer Interrupt (DTI) to the TIO CSCI between 

0 millisecond and 3.8 milliseconds maximum after the End-of-Slot (EOS). This is a 

signal to the TIO CSCI that it can perform its I/O processing (with the Core CSCI), 

which it must complete by the EOS. 

Each CSCI will read the appropriate Handshake Word prior to reading from the 

appropriate shared memory region to ensure that the other CSCI has updated the region.  

Similarly, each CSCI will read the appropriate Handshake Word prior to writing to the 

appropriate shared memory region to ensure that the other CSCI has cleared the region. If 

the other CSCI has failed to perform its I/O processing, the CSCI must log the failure.  

Each CSCI will update the appropriate Handshake Word after the completion of the read 

or write.  

If the interrupt from Core CSCI is later than 3.8 millisecond, the impact to other 

CSCIs is depending on the loading of the system at that time slot.  In a normal load 

condition, this interrupt is generated around 3.5 millisecond. Beyond 3.8 millisecond, a 
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strong possibility that the system will start dropping messages. When this happen the 

terminal performance will start to degrade. 

 

 

 

 

 

 

 

 

Figure 3.13. Timing diagrams of Core and TIO CSCI 

 

E. INTERFACE SPECIFICATION 

Generally, an API defines what data structures and facilities are available for use 

by the application program without defining how the structure and facilities are 

implemented.  In the component-based software technology, APIs are critical for any 

vendor implementing a complex system who needs to cleanly partition work effort, 

migrating code from one platform to another, and abstract away interfaces so hardware 

changes can be made easily.  Additionally, the use of APIs – especially standardized 

APIs – makes possible a whole set of vendors creating different elements of the system, 

interfacing to multiple hardware vendors, other software vendors and customer-

developed elements.  

In the MIDS-LVT system, APIs are the standardized interfaces that present inter-

processor communication functionality via shared memory to the rest of the software 

architecture.  For this reason, APIs are specified in a language-independence fashion.  We 

define six basic interface connection services for shared memory.  These interface 

services inherit and extend from the Connection base class for the application to access 

the shared memory as shown in figure 3.14.  The Connection interface is abstract class 

that consists of three basic services: isDeviceOK, Read, and Write.  These services are 

pure virtual functions in C++ language.  Most of the shared memory APIs are intuitive.  

CORE 

TIO 

EOS = 7.8125 msec 

DTI = EOS + 0 to 3.8msec 
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«Interface»
Connection

+isDeviceOK(Device : DeviceType) : virtual boolean
+Read(Device : DeviceType, Message : MessageType*) : virtual boolean
+Write(Device : DeviceType, Message : MessageType*) : virtual boolean

SharedMemoryConnection

+isDeviceOK(Device : DeviceType) : boolean
+Read(Device : DeviceType, Message : MessageType*) : boolean
+Write(Device : DeviceType, Message : MessageType*) : boolean
+SharedMemoryConnection(buffer_size : unsigned short, status : unsigned short*)
+~SharedMemoryConnection()
+Send() : boolean

 
 

Figure 3.14. API services for shared memory 

 

F. API SERVICES FOR THE SHARED MEMORY CONNECTION 

1. isDeviceOK 

The purpose of the API is to perform a built-in-test and initialize the buffer for the 

CSCIs’ inter-processor communication. This function fails if the buffer is not empty.  

Syntax: 

isDeviceOK(Device : DeviceType) : boolean 

Parameters: 

Device – This parameter is a device type (e.g., shared memory). 

Response: 

true - if shared memory is successfully initialized and passes the 

write/read built-in-test. 
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false - if the buffer is not successfully initialized or fails the write/read 

built-in-test. 

State: 

This command is valid in all states. 

New State: 

This command causes a state change. 

Originator: 

The service user. 

 

2. Read 

The purpose of the API is to read the next available message from the buffer. 

Before starting any elaboration, the API will check if the sender CSCI has finished 

writing to the receiver CSCI’s buffer. If it is not the case, the API will return an error. 

After the API has completed reading all the messages, it will set the handshake word to 

Receiver Finished Reading, which informs the sender CSCI that the receiver CSCI has 

finished reading the messages (unlock the shared memory). 

Syntax: 

Read(Device : DeviceType, Message : MessageType*) : boolean 

Parameters: 

Device – This parameter is a device type (e.g., shared memory). 

Message – This parameter is a data buffer allocated by the caller. The 

contents of the shared memory buffer are copied to this buffer. The procedure 

uses the word count fields of the shared memory data buffer to determine the 

numbers of words to copy. 

Response: 
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true - if the receiver CSCI read the message from the sender CSCI 

successfully. 

false - when a generic error occurs. 

State: 

This command is valid in all states. 

New State: 

This command causes a state change. 

Originator: 

The service user. 

 

3. Write 

The purpose of the API is to write a message into the specific receiver buffer. In 

case there is not enough room to store the message, the API will not store anything. 

Before starting any elaboration, the API will check if the CSCI can write in the specified 

receiver CSCI’s buffer. If it is not the case, the API will return false, indicating failure to 

write. 

Syntax: 

Write(Device : DeviceType, Message : MessageType*) : boolean 

Parameters: 

Device – This parameter is a device type (e.g., shared memory). 

Message – This parameter is a data buffer allocated by the caller. The 

contents of the buffer are copied to the shared memory buffer. The procedure uses 

the word count fields of this buffer to determine the numbers of words to copy. 

Response: 

true - when the message has been stored in the buffer successfully. 
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false - when a generic error occurs. 

State: 

This command is valid in all states. 

New State: 

This command causes a state change. 

Originator: 

The service user. 

 

4. Send 

After the Write API has completed writing all the messages to the shared 

memory, this API will set the handshake word to Sender Finished Writing which informs 

the receiver CSCI that the sender CSCI has finished writing the messages (unlock the 

shared memory). It will also trigger the Data Transfer Interrupt to inform the receiver 

CSCI. This API is needed to synchronize the messages to a specific time slot.  For 

example, if the shared memory contains five messages, these messages must send and 

read at the same time slot. The messages may contain navigation or tracks data which 

require precise correlation by the host platforms with other sensors. 

Syntax: 

Send() : boolean 

Parameters: 

None. 

Response: 

true - if the indication is generated successfully. 

false - when a generic error occurs. 

State: 
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This command is valid in all states. 

New State: 

This command causes a state change. 

Originator: 

The service user. 

 

5. SharedMemoryConnection 

This API is the constructor for the ShareMemoryConnection.  The purpose of the 

API is to allocate and check memory for the shared memory object when it is first 

created. This API prevents the user from creating two or more shared memory objects 

with the same address space. The status word parameter is passed as a pointer to the API.  

In case there is not enough room to create the shared memory object, the API will return 

an error in the status word. 

Syntax: 

SharedMemoryConnection(buffer_size : unsigned short, status : unsigned 

short*) 

Parameters: 

buffer_size – The parameter is the buffer size in the shared memory object 

(16-bit word). 

status – The parameter is a status word passed by pointer to the API. The 

return value indicates SUCCESS (1) or FAILURE (0).  

Response: 

SUCCESS - if the shared memory object is successfully allocated and 

checked.  

FAILURE - if the shared memory object cannot be allocated and checked. 

State: 
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This command is valid in all states. 

New State: 

This command causes a state change. 

Originator: 

The service user. 

 

6. ~SharedMemoryConnection 

This API is the destructor for the ShareMemoryConnection.  The purpose of the 

API is to release the memory used the shared memory object when the connection is no 

longer needed, such as when application terminates.  

Syntax: 

~SharedMemoryConnection() 

Parameters: 

None 

Response: 

None. 

State: 

This command is valid in all states. 

New State: 

This command causes a state change. 

Originator: 

The service user. 
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 G. SUMMARY 

This chapter presents the MIDS-LVT interoperability model for CSCI inter-

processor communication in a heterogeneous distributed environment.  Our model 

consists of the API, the protocol, and the temporal specification that are needed for CSCI 

interoperation. The API allows us to separate the CSCI’s internal activity from its 

external relationships. The protocol provides a strict constraint mechanism and policy to 

control the legal ordering of the sequence of messages involved in the interaction of the 

MIDS-LVT CSCIs.  The temporal specification provides the timing requirements and 

constraints for the interactions of the MIDS-LVT CSCIs. 

We also present the top-level architecture framework for the MIDS-LVT and the 

six APIs for the CSCI inter-processor communication via the virtual communication 

interface to the shared memory. The API functions are grouped into building blocks to 

define the inter-processor communication services, which foster software reuse and 

commonality among the CSCIs. 

APIs are critical for any vendor implementing a complex system who needs to 

cleanly partition work effort, migrating code from one platform to another, and abstract 

away interfaces so hardware changes can be made easily.  Additionally, the use of APIs – 

especially standardized APIs – makes possible a whole set of vendors creating different 

elements of the system, interfacing to multiple hardware vendors, other software vendors 

and customer-developed elements.  

In Chapter IV, we will present the design and implementation of our API. 
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IV. DESIGN AND IMPLEMENTATION 
This session describes our APIs architecture and its implementation details. 

A. API ARCHITECTURE DESIGN 

The architecture design pattern represented in figure 4.1 is the approach for the 

design and implementation of our API for the MIDS-LVT inter-processor 

communication.  We use the facade pattern, which provides a unified interface to a set of 

objects in the hardware devices. This pattern defines our API, which is a higher-level 

interface that makes the hardware device easier to use, i.e., it abstracts out the gory 

details.  We use aggregation for the hardware devices whose parts are a set of APIs in the 

façade class. We are avoiding client direct access to the hardware devices. All client 

service requests have to pass through the façade class.  

 

Client Facade class

Hardware devices

Invokes Operation

Dispatches to Operation

 
 

 

Figure 4.1. Architecture design pattern 

 

In figure 4.2, the collaboration diagram shows the interaction between the client, 

the façade controller, the hardware devices and the specific type of devices.  Where the 

class diagram defines a static relationship structure between the classes, the collaboration 

diagram defines a communication structure between the objects of those classes. 
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Whenever the façade-controller receives a dispatchable service request, it forwards the 

request to the appropriate message dispatcher (hardware devices class). The dispatcher 

gathers any necessary information and then dispatches the request to the appropriate 

subclass (shared memory class). 

 

:Client :Class facade-controller

:HardwareDevices

Msg(Ptr)

1: Msg_Dispatcher(Ptr)

:SharedMemory :Ethernet :MIL-STD-1553

Msg is dispatching
calls to proper subclass

 
 

Figure 4.2. Collaboration diagram of API 

 

B. API PROTOCOL DESIGN 

The class diagram presents a static view of our API.  To understand the behavior 

of the API for the MIDS-LVT we created new diagrams showing the aspect of our 

design. The statechart, collaboration, and message sequence diagrams describe the 

dynamic behavior of the API.  We will use statecharts to shows the constructor, 

isDeviceOK, read, write, and send protocol. 
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1. Constructor (SharedMemoryConnection) Protocol 

As shown in figure 4.3, a constructor protocol controls the shared memory 

allocation process.  The constructor prevents the user from allocating the same shared 

memory region a second time after it had been allocated.  SharedMemoryConnection is 

allowed to execute only once, from the initial state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. Constructor (SharedMemoryConnection) protocol statechart 

 

2. isDeviceOK Protocol 

As shown in figure 4.4, the isDeviceOK protocol performs the write/read built-in-

test and initializes the buffer.  The transition from state S0 to S1 indicates that an error 

condition has occurred. The memory device failed the write/read built-in-test. If this case 

happenes, the application may need to allocate new memory that maps to different region 

of the physical address. In the case of a hardware device (MIL-STD-1553 and RS-422) 

fail, the system’s performance may degrade. 

 
 
 
 
 
 
 

1

0
SharedMemoryConnection 

Actions other than SharedMemoryConnection 
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Figure 4.4. isDeviceOK protocol statechart 

 

3. Write Protocol 

A Write protocol controls how data is written to the shared memory as shown in 

figure 4.4.  The transition from state S0 to S1 requires that we have enough room in the 

shared memory for the message. We also need to check the handshake word to make sure 

that the receiver has finished reading the previous data.  If the response is fail, the return 

status will indicate an error condition. In this case, no more room is available in the 

shared memory object. If the response is success, we can transition into state S1 and back 

to S0. Before going back to state S0, we will write data to the shared memory buffer.  

The write operation enforces the protocol of checking to make sure only one processor 

can enter the critical section using the isFinishedRead function. This is the pre-condition. 

The post-condition, is the execution of the setFinishedWrite function, which is part of the 

Send protocol required to unlock the critical section of the shared memory for the other 

processor to access. 

 

 
 
 
 
 
 

S1

S0
isDeviceOK/false 

isDeviceOK/true 
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Figure 4.5. Write protocol statechart 

 

4. Send Protocol 

As shown in figure 4.6, a send protocol controls when the data buffers in the 

shared memory are send. The transition from state S0 to S1 indicates successful 

unlocking of the shared memory.  If the response is fail, the return status will indicate an 

error condition. If the response is success, we can transition back to state S0. Before 

going back to state S0, we will trigger the Data Transfer Interrupt to inform the receiver 

CSCI that we are finshed writing to the shared memory. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 Send protocol statechart 

setInterrupt 

1 
setFinishedWrite /  

false 

setFinishedWrite / true 

0

S1

hasMoreRoomForMessage &
isFinishedRead /  

false 

hasMoreRoomForMessage & isFinishedRead  /  true 

writeDTB 
S0
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5. Read Protocol 

As shown in figure 4.7, a Read protocol controls how data is read from the shared 

memory. The transition from the initial state to state S0 requires a message “Event”.  For 

the TIO CSCI, the event is a software interrupt (DTI)  generated by the Core CSCI (Write 

API) when the last buffer is written into the shared memory. For the Core CSCI, the 

event is periodic hardware interrupt (EOS) generates every 7.8125 millisecond, which 

indicates the ending of a slot.  The TIO CSCI must complete its Write API before the 

EOS is generated.   

In state S0, we check to make sure that the sender had finished writing data to the 

shared memory.  If the response is fail, an error condition will occur.  In this case, we 

need to go back to state S0 and wait for a new event message.  If the response is success, 

we will transition to state S1.  In this state, we will need to check that there are no more 

messages available to be read from the shared memory. If the response is false, we go to 

state S2 and back to S0.  If the response is true, we go to state S3.  This could be an error 

condition or it could just mean that the sender wrote no data or no more messages to be 

read.  Before going back to state S0, we will set the Receiver Finished Reading bit in the 

handshake word to informs the sender CSCI that the receiver CSCI has finished reading 

the messages (unlock the shared memory).  

Similar with the write protocol, IsFinishedWrite is the pre-condition and 

SetFinshedRead is the post-condition required for the receiver not to enter the critical 

shared memory section while the sender is still accessing it.  This is critical for our 

application because our data buffer is tied to a specific time slot.  

If the response is false, this indicates that valid data is present at that location and 

we transition to state S2 and back to S0.  We will execute as many read operations as 

required to get all the messages from the shared memory. 
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Figure 4.7. Read protocol statechart 

 

C. IMPLEMENTATION 

This section describes the concrete implementation details. The concrete 

implementation of the APIs was implemented under the Microsoft Visual C++ Version 

6.0 programming language. This implementation conforms to the interface and protocol 

specifications of our interoperability model. Since no hardware or operating system 

related facilities are used in our APIs’ implementation, they are portable.  

In figure 4.8, we present the UML class diagram of our APIs. The APIs’ functions 

implemented in C++ for data transfer for shared memory in a multiprocessor 

environment are as follows: 

 

1. Constructor 

The Constructor method takes two parameters – size and status. The Size 

parameter is the size of the shared memory object. The status parameter is the status of 

the allocation of memory for the shared memory object. Status is an unsigned short, 

1

2 

isFinishedWrite / fail 

hasMoreMessage /  
true 

readDTB 

0 

setFinishedRead 

isFinishedWrite / success 

hasMoreMessage /  
false 

3
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which is passed by pointer to the constructor. The return value of the status parameter 

represents the success or failure of the constructor execution.  
 
SharedMemoryConnection::SharedMemoryConnection(unsigned short buffer_size, 

unsigned short* status) 
 

The constructor communicates with a static function in the ShmManager class to 

allocate physical memory to the shared memory object. 
 
shm_addr = ShmManager::allocate( buffer_size, &allocate_status) 
 

Allocate is a static method that take two parameters – buffer_size and 

allocate_status. The Buffer_size is the size of the shared memory object. The 

Allocate_status is a pass-by pointer and returns the status from the allocate method. The 

status value is one if it succeeded in completing the actions, otherwise it return a zero 

value. This static method returns the address of the shared memory object (shm_addr) 

after completing the allocate actions. 

The constructor also call isDeviceOK after it successfully allocate memory region. 

 

2. IsDeviceOK 

The isDeviceOK method takes one parameter – Device. The Device parameter is 

an enumerate type that list of all the possible devices (shared memory, Ethernet, 

Mil_STD-1553, and RS-422). For our API, the Device parameter consists of a shared 

memory. This method returns a true value if it succeeded in completing the actions, 

otherwise it return a false value. 
 
bool SharedMemoryConnection::isDeviceOK(DeviceType Device) 
 
3. Read 

The Read method takes two parameters – Device and Message. The Device 

parameter is an enumerate type that list of all the possible devices (shared memory, 

Ethernet, Mil_STD-1553, and RS-422). For our API, the Device parameter consists of a 

shared memory. The Message parameter is a message buffer type that contains data and 
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methods that needed to be transfer to and from the shared memory. This method returns a 

true value if it succeeded in completing the actions, otherwise it return a false value. 
 
bool SharedMemoryConnection::Write( DeviceType Device,  MessageType* Message) 

 

4. Write 

The Write method takes two parameters – Device and Message. The Device 

parameter is an enumerate type that list of all the possible devices (shared memory, 

Ethernet, Mil_STD-1553, and RS-422). For our API, the Device parameter consists of a 

shared memory. The Message parameter is a message buffer type that contains data and 

methods that needed to be transfer to and from the shared memory. This method returns a 

true value if it succeeded in completing the actions, otherwise it return a false value. 
 
bool SharedMemoryConnection::Write( DeviceType Device,  MessageType* Message) 
 
5. Send 

The Send method takes no parameter. This API sets the handshake word to Sender 

Finished Writing which informs the receiver CSCI that the sender CSCI has finished 

writing the messages (unlocks the shared memory). This method returns a true value if it 

succeeded in completing the actions, otherwise it return a false value. 
 
bool SharedMemoryConnection::Send() 
 
6. Destructor 

The Destructor method takes no parameter. This API will release the memory 

used in the shared memory object when the application terminates 
 
SharedMemoryConnection::~SharedMemoryConnection() 
 

This implementation uses pointers to access the message objects in the shared 

memory. A set pointer is sent from the producer processor to the consumer processor. 

The pointers point to the buffers that are in the shared memory region accessible to both 

processors. The usage of pointers is straightforward and efficient.  This is because the 
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address of a shared object in one processor is the same as that in the other processor.  

Thus, the programmers are not required to translate between local and global addresses of 

a shared object.  

An ordinary access requires that the programmer must follow the protocol to 

ensure the correctness. The protocol provides synchronization and mutual exclusion 

guarantees that the consumer will obtain the most up-to-date data available at the time of 

the consuming. Specifically, our protocol guarantees that all message buffers are written 

and read as a group within the specific time slot. This is a robustness requirement of our 

system. The full source code is provided in Appendix A. 
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«Interface»
Connection

+isDeviceOK(Device : DeviceType) : virtual boolean
+Read(Device : DeviceType, Message : MessageType*) : virtual boolean
+Write(Device : DeviceType, Message : MessageType*) : virtual boolean

SharedMemoryConnection

+isDeviceOK(Device : DeviceType) : boolean
+Read(Device : DeviceType, Message : MessageType*) : boolean
+Write(Device : DeviceType, Message : MessageType*) : boolean
+SharedMemoryConnection(buffer_size : unsigned short, status : unsigned short*)
+~SharedMemoryConnection()
+Send() : boolean
-isFinishedRead() : boolean
-isFinishedWrite() : boolean
-setFinishedRead() : boolean
-setFinishedWrite() : boolean
-getPointer(pointer : unsigned short*) : boolean
-setInterrupt() : boolean
-hasMoreMessage() : boolean
-hasRoomForMessage(Message : MessageType*) : boolean

-shm_addr : unsigned short*
-buffer_size : unsigned short
-pointer_index : unsigned short
-DTB_index : unsigned short
-shm_id : unsigned short
-shm_status : bool
-current_sharedmem_size : unsigned short

MessageType

+MessageType(m_size : unsigned short, m_id : MsgIDType)
+MessageType(m_size : unsigned short)
+~MessageType()
+readDTB(source : unsigned short*) : boolean
+writeDTB(destination : unsigned short*) : boolean
+getSize() : unsigned short
+copyBuffer() : bool
+getRecvMsgID() : unsigned short
+getBufferAddress() : unsigned short*

-size : unsigned short
-msg : unsigned short*
-status : unsigned short
-id : MsgIDType

messages

ShmManager

+ShmManager()
+~ShmManager()
+allocate(shm_size : unsigned short, status : unsigned short*) : static unsigned short*
+getTotalShmObject() : static unsigned short

-base_addr : unsigned short*
-current_addr : static unsigned short*
-current_size : static unsigned short
-count : static unsigned short

manager

 
Figure 4.8. API UML diagram 
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V. RESULTS 
In this section, we present the results of an experiment conducted to shows the 

performance of API services for inter-processor communication.  

 

A. TEST ENVIRONMENT AND METHODOLOGY 

We implemented and tested the first version of the API on our simulated 

embedded distributed environment for the Core and TIO CSCIs.  Our simulated system 

consists of a MZ7140 VMEbus Single Board Computer, a BIU-153V, and a VBT-325 as 

shown in figure 5.1.  The MZ7140 is a Single Board Computer, which consist of a 

MC68040 @ 25MHZ, four Mbytes of multiple-access DRAM, an on-board SCSI, and 

Ethernet interfaces. The BIU-153V is a Bus Interface Unit that provides a connection 

between a host and the MIL-STD-1553 bus. The BIU-153V has a high-speed controller 

in conjunction with Dual Port Random Access Memory, which was used as the shared 

memory for testing the API inter-processor communication software. The VBT-325 is a 

bus analyzer for VME provide capabilities such as state analysis, timing analysis, and 

statistical analysis. Its application includes hardware and software debugging and testing, 

system tuning, and performance analysis. 

The test software API was coded in C and compiled using the Microware Version 

1.3 of the Kernigham and Ritchie (non ANSI/ISO-conformant) C compiler for the OS-9 

real-time operating system.  Since no hardware and operating system related facilities are 

used in the test program this program is portable to other RTOSs. 

Timings were obtained using a software-readable hardware counter in the VBT-

325, which measured elapsed time. The elapsed time is calculated based on trigger and 

store conditions.  The VBT-325 uses the event patterns and sequencer as the main control 

elements to define the trigger and store conditions.  The event patterns define a trigger, 

store or count conditions and the sequencer defines a complex trigger condition, store 

qualifier, etc. 
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Figure 5.1. Test environment 

 

B. PERFORMANCE EVALUATION 

The main focus of the performance tests is on how much overhead or latency does 

the API really incur compared with the legacy approaches as shown in figure 5.2.  The 

latency or overhead may be loosely defined as the time from when an API calls occurs 

until it is serviced.  In a multi-processes environment this time can vary for a number of 

reasons.  First, the CPU will always finish the current instruction before servicing the API 

call, and some instructions can take longer than others. The CPU may be executing a 

sequence of instructions protected by a high priority thread or the CPU may be executing 

an interrupt service routine, which often has interrupts disabled.  The actual timings in a 

normal operation may vary considerably depend on the state of the system and its 

hardware.  

The overhead costs of the API calls are important in order to obtain a 

characterization of the implementation on various real-time operating systems. Since it is 

difficult to measure the overhead for round-trip communication in our simulated 

embedded distributed environment without the synchronized clock (DTI and EOS), our 

measurements were all made on one-way communications.  In particular, our overhead 

measurements were done with respect to one-way write and read API interfaces and 

protocols.  

MZ7140 BIU-
153V 

VBT-325 VT100 
 

VME Bus 

PC 
 

Ethernet Bus RS-232 Bus 
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To measure the overhead of legacy approach, we recorded a direct write and read 

to the shared memory without the use of the API.  The data is present in table 5.1. The 

average measured time for two bytes of data during read is 1.21 microsecond and during 

write is 1.19 microsecond. As expected, there is no overhead with the direct access to the 

shared memory. 

To compare the performance of the API with the legacy approaches, each 

measurement includes the time to execute the following steps: 

 

1. Writing steps 

The writing steps for the measurement of one-way latency is as follows: 

– The Writer calls IsFinishedRead to acquire the lock. 

– If it is true, the Writer then starts sending data to the shared memory. 

– When completed writing, the Writer then performs SetFinishedWrite to 

release the lock.  

 

2. Reading steps 

The reading steps for the measurement one-way latency is as follows: 

– The Reader calls IsFinishedWrite to acquire the lock. 

– If it is true, the Reader then starts reading data from the shared memory. 

– When completed reading, the Reader then performs SetFinishedRead to 

release the lock.  

 

Table 5.2 shows the average measured times to acquire and release a lock. To 

acquire the lock the average measured time was 4.19 microseconds and to release the 
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lock the average measured time was 5.09 microseconds. The operations consisted of 

reading, checking, or writing two bytes of data into the shared memory. 

In table 5.3, we show the average time measured for both writing and read steps.  

It indicates that the average one-way communication time is almost proportional to the 

message size. As result, the average overhead of using the API is almost constant. For 

reading steps, the average overhead is 8.9 microseconds and for writing steps, the average 

overhead time is 9.1 microseconds.   

Comparing table 5.1 with table 5.3, the measured timing results indicate that the 

use of API incurred very little extra overhead.  From Table 5.1, we calculated the average 

measured time of transferring 512 words to or from the shared memory without using the 

API and it took about 614 microseconds.  From Table 5.3, we also calculated the average 

measured time for transferring 512 words to or from the shared memory using the API 

and it took about 626 microseconds.  The different is 14 microseconds. Therefore, by 

using the API we incurred only about two percent of overhead. 

 
 
 
 
 
 
 
 
  

Figure 5.2. Timing overhead 

 

 
Operation Message size 

(bytes) 
Elapse Time 

(us) 
Read 2 1.21 

  1024 620 
Write 2 1.19 

  1024 609 
 

Table 5.1 Read and write without API 

 

API 
TIO

CSCI
Core 
CSCI 

Time 
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Operation 

(API) 

Message size 

(bytes) 

Elapse Time 

(us) 

Acquire 2 4.19 

Release 2 5.09 

 
Table 5.2 Time to acquire and release a lock using API 

 
 
 

Operation 
(API) 

Message size 
(bytes) 

Elapse Time 
(us) 

Overhead 
(us) 

Read 2 12.5 8.9 
 1024 631 8.9 

Write 2 12.7 9.1 
 1024 621 9.1 

 
Table 5.3 Overhead benchmarks for reading and writing steps (one-way communication) 
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VI. DISCUSSION 
 

 
A. PROGRAMMING LANGUAGE 

We have chosen the C programming language instead of other languages to 

implement and test our API simply because it was the only available distributed 

embedded development environment for us to conduct our experiment. This 

implementation could have easily been done in other object-oriented languages (OOL) 

such as C++, Java, and Ada under different development and RTOS environments. 

We also realized that the chosen specific programming language, hardware, and 

RTOS environment for implementation will affect the overhead costs for the API. For 

example, dynamic polymorphism occurs when the binding of the executable code to the 

operator invocation is done as the program executes. Depending on the chosen OOL, 

hardware, and RTOS environment, the API performance may vary significantly. 

 

B. PROGRAMMING NOTES 

This section provides general notes and examples to assist the user in the use of 

the SharedMemoryConnection API written in C++ language.  

In the MIDS-LVT, SharedMemoryConnection APIs are the standardized 

interfaces that present inter-processor communication functionality via shared memory to 

the rest of the software architecture. The following examples use the APIs to illustrate 

how an application should allocate, check, read, write, and send. Please refer to chapter 

III, section C and chapter IV, section C of this thesis for detailed explanations of the low-

level protocol specification and the APIs and their parameters. 

  

1. Allocating the shared memory: The shared memory must be requested 

and allocated before access to use the shared memory object is permitted. The constructor 

of the shared memory object is responsible for allocating and checking memory from the 

shared memory manager. If the allocation fails, all other calls to the shared memory 
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object will fail as well.  In the following example, the shared memory object is been 

allocated and checked. 

Declare a pointer (myshmgr) to the shared memory manager (ShmManager) and 

request memory from the shared memory manager. Declare a pointer (myshmem) to the 

shared memory connection (SharedMemoryConnection) and request memory for the 

shared memory connection. The return status from the constructor indicates success (1) 

or failure (0). 
 
ShmManager* myshmgr;   
myshmgr = new ShmManager(); 
 
SharedMemoryConnection* myshrmem; 
myshrmem = new SharedMemoryConnection(shm_max_size, &status); 
 
 

2. Checking the shared memory: The isDeviceOK API performed the 

write/read built-in-test to the allocated shared memory region. If the check fails, we may 

have a bad memory region. The user should try to re-allocate a new region, otherwise all 

data transfers may be corrupted. 

The isDeviceCheck is a member function of SharedMemoryConnection. The 

return boolean status indicates success (true) or failure (false). 
   
// check device using write/read built-in-test 
if (isDeviceOK( Sharedmem )) 
{ 
 … 
} 
 
 

3. Writing message buffer: The Write API writes each message buffer to 

the shared memory region. In case there is not enough room to store the message, the API 

will not store anything and will return a fail status. In this case, we may have a corrupted 

message buffer. For example, the word count the message buffers might be wrong. The 

user may want to drop this particular set of messages and wait for the next time slot.  

The Write is a member function of SharedMemoryConnection. The return boolean 

status indicates success (true) or failure (false). 
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// write message to the shared memory  
if (!(myshrmem->Write( Sharedmem, dtb1_out)))  

cout << " Error, write fail \n"; 
 
 

4. Sending message buffer: After the Write API has completed writing all 

the messages to the shared memory, the Send API informs the receiver CSCI that the 

sender CSCI has finished writing the messages. No data will be transfer until this API 

executes.  This is an important concept for the MIDS-LVT. We must synchronize a set of 

messages to a specific time slot.  

The Send is a member function of SharedMemoryConnection. The return boolean 

status indicates success (true) or failure (false). 
   
//send the message buffers at once  
if (!(myshrmem->Send()))  

cout  << " Error, send fail \n"; 
   
 

5. Reading message buffer: The Read API will read the next available 

message from the shared memory region. After this API has completed reading all the 

messages, it informs the sender CSCI that the receiver CSCI has finished reading the 

messages.  

The Read is a member function of SharedMemoryConnection. The return boolean 

status indicates more message (true) or no more message (false).  
 
// read while message is available in the current time slot 
while (myshrmem->Read( Sharedmem, dtb_in) )  // return true or false 
{ 
 switch (dtb_in->getRecvMsgID())   // get the message ID 
 { 
  case DTB1:    // DTB1 
   // copy form DTB to local buffer DTB1 

dtb_in->copyBuffer(dtb1_in->getBufferAddress(), size_dtb1);  
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C. EXTENDING INTEROPERABILITY MODEL 

Our model can be extended to other CSCIs in the MIDS-LVT.  We will explore 

this from an abstract viewpoint for the Core CSCI/MSG CSCI, the MSG CSCI/RF 

subassembly, the TIO CSCI/Host, the Core CSCI/Voice CSCI, the Core CSCI/Terminal 

Exerciser, and the TIO CSCI/Terminal Exerciser interfaces. Extending our model is 

possible due to our interface inheritance which separates each application from its 

internal detail implementation.  

 

1. Core CSCI and MSG CSCI 

The Core and MSG CSCIs communicate using the shared memory that resides in 

the DP SRU.  The physical base address is the same as for the Core and TIO CSCI. Using 

the same API, we can easily implement the new requirement for the Core and MSG 

communication.  

 

2. Core CSCI and Voice CSCI 

Communication between the Core and Voice CSCI is accomplished through using 

the dual-port shared memory that resides in the Voice SRU.  Our API and methods will 

remain the same. The physical base address of the memory in the Voice SRU must be 

coded in the program for this shared memory object.  

 

3. MSG CSCI and RF Subassembly 

The MSG CSCI communicates with the RF subassembly via an RS-422 bus. Our 

API will remain the same as shown in figure 6.1. The specific detailed implementation 

will change according with the MSG/RF subassembly device, protocol, and its buffer 

architecture. The Device type is RS-422. 
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RS422Connection

+isDeviceOK(Device : DeviceType) : boolean
+Read(Device : DeviceType, Message : MessageType*) : boolean
+Write(Device : DeviceType, Message : MessageType*) : boolean
+RS422Connection(buffer_size : unsigned short, status : unsigned short*)
+~RS422Connection()
+Send() : boolean  
 

Figure 6.1. MSG/RF subassembly API 
 

4. TIO CSCI and Host 

The TIO CSCI sends and receives data from various hosts using the MIL-STD-

1553 and Ethernet protocols. Our API will remain the same as shown in figure 6.2. The 

specific detailed implementation will change according with the TIO/Host device, 

protocol, and its buffer architecture. The Device type is MIL-STD-1553 or Ethernet 

depending on the host platform.  

 

MIL-STD-1553Connection

+isDeviceOK(Device : DeviceType) : boolean
+Read(Device : DeviceType, Message : MessageType*) : boolean
+Write(Device : DeviceType, Message : MessageType*) : boolean
+MIL-STD-1553Connection(buffer_size : unsigned short, status : unsigned short*)
+~MIL-STD-1553Connection()
+Send() : boolean

 

EthernetConnection

+isDeviceOK(Device : DeviceType) : boolean
+Read(Device : DeviceType, Message : MessageType*) : boolean
+Write(Device : DeviceType, Message : MessageType*) : boolean
+EthernetConnection(buffer_size : unsigned short, status : unsigned short*)
+~EthernetConnection()
+Send() : boolean  
 

Figure 6.2. MID-STD-1553 and Ethernet API 
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5. Core CSCI and Terminal Exerciser 

The Terminal Exerciser is field test equipment that is required for the 

reprogramming and recording of internal MIDS data. The communication between the 

Core CSCI and the Terminal Exerciser can be accomplished via the Data Processor 

Ethernet support port.  Our API will remain the same as shown in figure 6.3. The specific 

detailed implementation will change according with the Core/TE device, protocol, and its 

buffer architecture. The Device type is Ethernet.  

 

EthernetConnection

+isDeviceOK(Device : DeviceType) : boolean
+Read(Device : DeviceType, Message : MessageType*) : boolean
+Write(Device : DeviceType, Message : MessageType*) : boolean
+EthernetConnection(buffer_size : unsigned short, status : unsigned short*)
+~EthernetConnection()
+Send() : boolean  
 

Figure 6.3. Core and TE API 

 

6. TIO CSCI and Terminal Exerciser 

The Terminal Exerciser can also perform reprogramming and recording of MIDS 

data from the TIO CSCI.  The communication between the TIO CSCI and Terminal 

Exerciser can be accomplished via the Avionics 1553 Mux. Our API will remain the 

same as shown in figure 6.4. The specific detailed implementation will change according 

with the Core/TE device, protocol, and its buffer architecture. The Device type is MIL-

STD-1553. 
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MIL-STD-1553Connection

+isDeviceOK(Device : DeviceType) : boolean
+Read(Device : DeviceType, Message : MessageType*) : boolean
+Write(Device : DeviceType, Message : MessageType*) : boolean
+MIL-STD-1553Connection(buffer_size : unsigned short, status : unsigned short*)
+~MIL-STD-1553Connection()
+Send() : boolean  
 

Figure 6.4. TIO and TE API 
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VII. CONCLUSIONS & FUTURE WORK 

This chapter provides the conclusions of the research conducted and remaining 

challenges, which require future research in the field of interoperability with legacy 

software systems. 

 

 A. CONCLUSIONS 

This thesis proposes an interoperability model, which provides a high-level 

abstraction for the CSCI interfaces and its interactions to address the re-engineering of 

old procedural software of the MIDS-LVT to a modern object-oriented architecture. The 

proposed interoperability model consists of interface, protocol, and temporal 

specifications.  The interface specification is represented by a set of APIs, which act as 

interfaces for the CSCIs to interact and to cooperate in a distributed heterogeneous 

environment. The APIs provide a simple programming interface, which shields the 

software designer from the detailed complex implementation of proprietary device 

drivers and RTOS facilities. As a result, changes or unsupported proprietary software can 

be controlled to minimize the impact of the application software. 

The protocol specification is a strict constraint mechanism or policy that controls 

the legal ordering of the sequence of messages involved in the interaction of two CSCIs.  

The use of the protocol provides a safe and verifiable information exchange between the 

CSCIs.  

For the temporal specification, we are interested in the ability of the system to 

schedule the functions that provide and consume the data for interaction between two 

CSCIs. For two CSCIs to be interoperable, their temporal requirements need to be 

compatible. 

 These specifications are critical for system interoperability but have not been 

sufficiently identified in practice. The proposed model is expected to formalize the 

interoperability requirements for the MIDS-LVT system and to identify and improve the 

component performance. After being applied in the modernization of the Core CSCI 
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components, the model can be extended for other CSCI components with correspondent 

requirement abstractions. 

Our experiment showed that the use of API incurred only about two percent of 

overhead. Based on this result, we conclude that this model provides value added to the 

effort of re-engineering old procedural software of the MIDS-LVT to a modern object-

oriented architecture.   

 

B. FUTURE WORK 

Future study should formalize the interoperability model and should consider at 

least one additional aspect to the model, total system performance response.  In a plug-

and-play environment, we want to guaranty that the composition of the CSCI components 

can achieve the robustness, reliable, and maintainable with interchangeable of software 

and hardware components. 

One immediate research area is to experimentally assess the effect of using 

CORBA as a replacement for shared-memory communication inside the MIDS-LVT.  
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APPENDIX A. API LISTING 
 

A. C++ VERSION 

 

1. ShrdMmry.h 
/**
* The <code>ShrdMmry</code> class defines the API methods for reading, writing,
* checking, sending, constructing and destructing shared memory connection for
* inter-processor communication.
*
* @author Theng C. Moua
* @version 1.0, 10 September 2001
*/

#ifndef ShrdMmry_h
#define ShrdMmry_h 1

// Shared memory manager
#include "ShmMgr.h"

// Message Type
#include "MssgType.h"

// Device Type
#include "DevcType.h"

#define HANDSHAKE 0 /* location of the hand shake word */
#define POINTERS 1 /* pointer starting location */
#define DTBS 8 /* data starting location */

typedef unsigned char byte; /* Byte is a char */
typedef unsigned short int word16; /* 16-bit word is a short int */
typedef unsigned int word32; /* 32-bit word is an int */

class Connection
{
public:

//## Operation: pure virtual function isDeviceOK
virtual bool isDeviceOK(DeviceType Device) = 0;

//## Operation: pure virtual function Read
virtual bool Read(DeviceType Device, MessageType* Message) = 0;

//## Operation: pure virtual function Write
virtual bool Write(DeviceType Device, MessageType* Message) = 0;

};

// Class Connection

class SharedMemoryConnection : protected Connection
{
public:

//## Constructors (generated)
SharedMemoryConnection(unsigned short, unsigned short*);

//## Destructor (generated)
~SharedMemoryConnection();

//## Other Operations (specified)
//## Operation: isDeviceOK
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bool isDeviceOK(DeviceType);

//## Operation: Read data from shared memory
bool Read(DeviceType, MessageType*);

//## Operation: Write data to shared memory
bool Write(DeviceType Device, MessageType*);

//## Operation: Send data out
bool Send();

private:
unsigned short *shm_addr;
unsigned short shm_size;
unsigned short pointer_index;
unsigned short DTB_index;
unsigned short shm_id;
bool shm_status;
unsigned short current_shm_size;

//## Operation: isFinishedRead
bool isFinishedRead();

//## Operation: isFinishedWrite
bool isFinishedWrite();

//## Operation: setFinishedWrite
bool setFinishedWrite();

//## Operation: setFinishedRead
bool setFinishedRead();

//## Operation: getPointer
bool getPointer(unsigned short*);

//## Operation: setInterrupt
bool setInterrupt();

//## Operation: hasNoMoreMessage
bool hasNoMoreMessage();

//## Operation: hasNoRoomForMessage
bool hasNoRoomForMessage(MessageType*);

};

// Class SharedMemoryConnection

#endif

2. ShrdMmry.cpp 
/**
* The <code>ShrdMmty</code> class implements the API methods for reading, writing,
* checking, sending, constructing and destructining shared memory connection for
* inter-processor communication.
*
* @author Theng C. Moua
* @version 1.0, 10 September 2001
*/

// SharedMemoryConnection

#include "ShrdMmry.h"
#include <iostream.h>

// Class SharedMemoryConnection
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/** Constructor for SharedMemoryConnection
* @param buffer_size the size of memory region declared in unsigned short (16 bit word)
* @param status is the status pass by pointer to allocate of a shared memory region. The
* return value indicare success (1) or failure (0).
*/

SharedMemoryConnection::SharedMemoryConnection(unsigned short buffer_size, unsigned
short* status)
{

cout << "Sharedmem const\n";
unsigned short allocate_status;

shm_addr = ShmManager::allocate( buffer_size, &allocate_status);

if (!allocate_status)
{

*status = 0;
cout << " Error condition, can't allocate memory \n";

}
else
{

shm_size = buffer_size;
pointer_index = 0;
DTB_index = 0;
*status = 1;
current_shm_size = 0;
shm_id = ShmManager::getTotalShmObject(); //get the current number

}
}

/** Destructor for SharedMemoryConnection
* Parameters are not required
*/

SharedMemoryConnection::~SharedMemoryConnection()
{

delete [] shm_addr;

}

//## Other Operations (implementation)

/** Check the SharedMemoryConnection
* @param Device is the device type (Sharedmem) required for this method
* @return <tt>true</tt> if internal states are sucessfully check.
*/

bool SharedMemoryConnection::isDeviceOK(DeviceType Device)
{

unsigned short dpmidx;
bool status = true;

if (Device != Sharedmem)
return false;

for (dpmidx = 0; dpmidx < shm_size; dpmidx++)
shm_addr[dpmidx] = 0x0000;

dpmidx = 0x0000;

do
{

if (shm_addr[dpmidx] != 0x0000)
{
status = false;

}
else
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{
dpmidx++;

}

}while ((dpmidx < shm_size) && (status == true));

return status;
}

/** Read message from SharedMemoryConnection
* @param Device is the device type (Sharedmem) required for this method
* @param Message is a message type required for read and write to the memory region
* @return <tt>true</tt> if internal states are sucessfully read.
*/

bool SharedMemoryConnection::Read( DeviceType Device, MessageType* Message)
{

unsigned short *dtb;
unsigned short offset;

if (Device != Sharedmem)
return false;

if (hasMoreMessage())
{

getPointer(&offset);
dtb = shm_addr + offset;
Message->readDTB(dtb);
shm_addr[pointer_index] = 0x0000;

return true;
}
else
{

if (!(setFinishedRead()))
cout << "Error, can't reset the lock\n";

return false;
}

}

/** Check for no more room in the SharedMemoryConnection
* @return <tt>true</tt> if internal states are sucessfully check no more room.
*/

bool SharedMemoryConnection::hasRoomForMessage(MessageType* Message)
{

if ( (current_shm_size + Message->getSize()) > shm_size )
return false;

else
return true;

}

/** Check for no more message in the SharedMemoryConnection
* @return <tt>true</tt> if internal states are sucessfully check no more message.
*/

bool SharedMemoryConnection::hasMoreMessage()
{

if ((shm_addr[POINTERS + pointer_index] == 0) || (pointer_index == 7))
return false;

else
return true;

}

/** Write message to SharedMemoryConnection
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* @param Device is the device type (Sharedmem) required for this method
* @param Message is a message type required for read and write to the memory region
* @return <tt>true</tt> if internal states are sucessfully write.
*/

bool SharedMemoryConnection::Write( DeviceType Device, MessageType* Message)
{

unsigned short *pointer, *dtb;

if (Device != Sharedmem)
return false;

if ( !(hasRoomForMessage(Message)) )
{

cout<< "Error condition, no more room in the shared memory \n";
return false;

}

if (isFinishedRead())
{

/* pointer to memory pointer area */
pointer = shm_addr + POINTERS + pointer_index;

*pointer = DTBS + DTB_index; /* value of next data location */

dtb = shm_addr + *pointer;
Message->writeDTB(dtb);
DTB_index = DTB_index + Message->getSize();

pointer_index++;

// set the current size of the shared memory
current_shm_size += Message->getSize();

return true;
}
else
{

cout<< "Error condition, not Finished Read yet \n";
return false;

}
}

/** Check if receiver finished reading from SharedMemoryConnection
* @return <tt>true</tt> if internal states are sucessfully check for finished reading.
*/

bool SharedMemoryConnection::isFinishedRead()
{

if (shm_addr[HANDSHAKE] == 0x0000)
return true;

else
return false;

}

/** Check if receiver finished writing from SharedMemoryConnection
* @return <tt>true</tt> if internal states are sucessfully check for finished writing.
*/

bool SharedMemoryConnection::isFinishedWrite()
{

if (shm_addr[HANDSHAKE] == 0x0001)
return true;

else
return false;

}
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/** Set finished writing to the SharedMemoryConnection
* @return <tt>true</tt> if internal states are sucessfully set finished writing.
*/

bool SharedMemoryConnection::setFinishedWrite()
{

DTB_index = 0;
pointer_index = 0;

shm_addr[HANDSHAKE] = 0x0001;

if (shm_addr[HANDSHAKE] == 0x0001)
return true;

else
return false;

}

/** Set finished reading to the SharedMemoryConnection
* @return <tt>true</tt> if internal states are sucessfully set finished reading.
*/

bool SharedMemoryConnection::setFinishedRead()
{

pointer_index = 0;

shm_addr[HANDSHAKE] = 0x0000;

if (shm_addr[HANDSHAKE] == 0x0000)
return true;

else
return false;

}

/** Get pointer from SharedMemoryConnection
* @param offset is pass by pointer, the return value is the address of the next message
* @return <tt>true</tt> if internal states are sucessfully write.
*/

bool SharedMemoryConnection::getPointer( unsigned short *offset)
{

*offset = shm_addr[ POINTERS + pointer_index];
pointer_index++;

return true;
}

/** Send messages from SharedMemoryConnection
* @return <tt>true</tt> if internal states are sucessfully send.
*/

bool SharedMemoryConnection::Send()
{

if (setFinishedWrite() == false)
{

cout << "Error, can't free the lock\n";
return false;

}

if (setInterrupt() == false)
{

cout << "Error, can't set the interrupt\n";
return false;

}

current_shm_size = 0;

return true;
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}

/** Set interrupt to SharedMemoryConnection
* @return <tt>true</tt> if internal states are sucessfully set interrupt.
*/

bool SharedMemoryConnection::setInterrupt()
{

// implementation of set the software interrupt (DTI)
return true;

}

// main program uses to test the APIs

int main()
{

unsigned short status, shm_max_size;
unsigned short size_dtb1 = 34;
unsigned short size_dtb2 = 34;
unsigned short size_dtb3 = 34;
unsigned short size_dtb4 = 34;
unsigned short size_dtb5 = 34;
unsigned short size_dtb6 = 131;
unsigned short size_dtb7 = 204;
shm_max_size = 1024;

ShmManager* myshmgr;
myshmgr = new ShmManager();

SharedMemoryConnection* myshrmem;

myshrmem = new SharedMemoryConnection(shm_max_size, &status);

if (!status)
{

cout << status << " Error, Device fail the allocation and init check \n";
delete myshrmem;

}

MessageType* dtb1_out;
dtb1_out = new MessageType( size_dtb1, DTB1);

MessageType* dtb2_out;
dtb2_out = new MessageType( size_dtb2, DTB2);

MessageType* dtb3_out;
dtb3_out = new MessageType( size_dtb3, DTB3);

MessageType* dtb4_out;
dtb4_out = new MessageType( size_dtb4, DTB4);

MessageType* dtb5_out;
dtb5_out = new MessageType( size_dtb5, DTB5);

MessageType* dtb6_out;
dtb6_out = new MessageType( size_dtb6, DTB6);

MessageType* dtb7_out;
dtb7_out = new MessageType( size_dtb7, DTB7);

// input dtbs

MessageType* dtb_in;
dtb_in = new MessageType( shm_max_size);

MessageType* dtb1_in;
dtb1_in = new MessageType( size_dtb1, DTB1);
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MessageType* dtb2_in;
dtb2_in = new MessageType( size_dtb2, DTB2);

MessageType* dtb3_in;
dtb3_in = new MessageType( size_dtb3, DTB3);

MessageType* dtb4_in;
dtb4_in = new MessageType( size_dtb4, DTB4);

MessageType* dtb5_in;
dtb5_in = new MessageType( size_dtb5, DTB5);

MessageType* dtb6_in;
dtb6_in = new MessageType( size_dtb6, DTB6);

MessageType* dtb7_in;
dtb7_in = new MessageType( size_dtb7, DTB7);

// write data out to shared memory

if (!(myshrmem->Write( Sharedmem, dtb1_out)))
cout << status << " Error, write fail \n";

if (!(myshrmem->Write( Sharedmem, dtb2_out)))
cout << status << " Error, write fail \n";

if (!(myshrmem->Write( Sharedmem, dtb3_out)))
cout << status << " Error, write fail \n";

if (!(myshrmem->Write( Sharedmem, dtb4_out)))
cout << status << " Error, write fail \n";

if (!(myshrmem->Write( Sharedmem, dtb5_out)))
cout << status << " Error, write fail \n";

if (!(myshrmem->Write( Sharedmem, dtb6_out)))
cout << status << " Error, write fail \n";

if (!(myshrmem->Write( Sharedmem, dtb7_out)))
cout << status << " Error, write fail \n";

if (!(myshrmem->Send()))
cout << status << " Error, send fail \n";

// read data from shared memory

while (myshrmem->Read( Sharedmem, dtb_in) )
{

switch (dtb_in->getRecvMsgID())
{

case DTB1:
dtb_in->copyBuffer(dtb1_in->getBufferAddress(), size_dtb1);
break;

case DTB2:
dtb_in->copyBuffer(dtb2_in->getBufferAddress(), size_dtb2);
break;

case DTB3:
dtb_in->copyBuffer(dtb3_in->getBufferAddress(), size_dtb3);
break;

case DTB4:
dtb_in->copyBuffer(dtb4_in->getBufferAddress(), size_dtb4);
break;

case DTB5:
dtb_in->copyBuffer(dtb5_in->getBufferAddress(), size_dtb5);
break;

case DTB6:
dtb_in->copyBuffer(dtb6_in->getBufferAddress(), size_dtb6);
break;

case DTB7:
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dtb_in->copyBuffer(dtb7_in->getBufferAddress(), size_dtb7);
break;

default:
break;

}
}

// test second shared memory

SharedMemoryConnection* myshrmem1;
myshrmem1 = new SharedMemoryConnection(shm_max_size, &status);

if ( status)
status = myshrmem1->isDeviceOK( Sharedmem );

else
delete myshrmem1;

// test third shared memory

SharedMemoryConnection* myshrmem2;

myshrmem2 = new SharedMemoryConnection(shm_max_size, &status);

if ( status)
status = myshrmem2->isDeviceOK( Sharedmem );

else
delete myshrmem2;

// how many shared memory object created
cout << "Total is " << ShmManager::getTotalShmObject() << "\n";

return 0;

}

3. MssgType.h 
/**
* The <code>MssgType</code> class defines the API methods for reading, writing,
* getting info, constructing and destructining message buffer to and from the shared
memory region.
*
* @author Theng C. Moua
* @version 1.0, 10 September 2001
*/

#ifndef MssgType_h
#define MssgType_h 1

#include <iostream.h>
#include <stdlib.h>

typedef enum {DTB0,DTB1, DTB2, DTB3, DTB4, DTB5, DTB6, DTB7} MsgIDType;

class MessageType
{
public:

//## Constructors (generated)
MessageType(unsigned short, MsgIDType);

//## Constructors ( temp read buffer)
MessageType(unsigned short);

//## Destructor (generated)
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~MessageType();

//## Operation: ReadDTB
bool readDTB (unsigned short*);

//## Operation: WriteDTB
bool writeDTB (unsigned short*);

//## Operation: CopyBuffer
bool copyBuffer (unsigned short*, unsigned short);

//## Operation: getSize
unsigned short getSize();

//## Operation: getRecvMsgID
unsigned short getRecvMsgID();

//## Operation: getBufferAddress
unsigned short* getBufferAddress();

private:
// Data Members for Class Attributes

unsigned short Size;
unsigned short* msg;
unsigned short Status;
MsgIDType ID;

};

// Class MessageType

#endif

4. MssgType.cpp 
// MessageType
#include "MssgType.h"

// Class MessageType

//## Constructors (generated)

/** Constructor for MessageType
* @param m_size is the size of the message buffer (DTB) declare as unsigned 16 bit word
* @param m_id is the type of DTB declare as enum
*/

MessageType::MessageType(unsigned short m_size, MsgIDType m_id)
{

int index;

Size = m_size;
msg = new unsigned short [Size];

msg [0] = m_id;
msg [1] = Size;

for (index = 2; index < Size; index++)
{

msg [index] = (unsigned short) rand(); // simulate data
}

}

//## Constructors ( temp read buffer)

/** Constructor for MessageType
* @param m_size is the size of the temp message buffer (DTB)
*/
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MessageType::MessageType(unsigned short m_size)
{

int index;

Size = m_size;
msg = new unsigned short [Size];

for (index = 0; index < Size; index++)
{

msg [index] = 0;
}

}

//## Destructor (generated)

/** Destructor for MessageType
* Paremeter are not required
*/

MessageType::~MessageType()
{

delete msg;
}

/** Read the MessageType
* @param source is the address of the DTB in the shared memory region
* @return <tt>true</tt> if internal states are sucessfully read.
*/

bool MessageType::readDTB (unsigned short* source)
{

unsigned short size;
unsigned short *dest;

dest = msg;
size = source[1]; //size

while ( size > 0)
{

*dest++ = *source++;
size--;

}

return true;
}

/** Write the MessageType
* @param dest is the address of the DTB in the shared memory region
* @return <tt>true</tt> if internal states are sucessfully write.
*/

bool MessageType::writeDTB (unsigned short* dest)
{

unsigned short size;
unsigned short *source;

source = msg;
size = Size;

int i = 0;

while ( size > 0)
{

i++;
*dest++ = *source++;
size--;

}
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return true;
}

/** Copy from the MessageType
* @param sest is the address of the DTB in the shared memory region
* @param size is the size of the buufer to be copy
* @return <tt>true</tt> if internal states are successfully copy.
*/

bool MessageType::copyBuffer (unsigned short* dest,unsigned short size )
{

unsigned short *source;
int i = 0;

source = msg;

while ( size > 0)
{

i++;
*dest++ = *source++;
size--;

}

return true;
}

/** Get size from the MessageType
* @return the size of the message buffer
*/

unsigned short MessageType::getSize()
{

return Size;
}

/** Get message ID from the MessageType
* @return the ID of the message buffer
*/

unsigned short MessageType::getRecvMsgID()
{

return msg[0];
}

/** Get address from the MessageType
* @return the address of the message buffer
*/

unsigned short* MessageType::getBufferAddress()
{

return msg;
}

5. ShmMgr.h 
/**
* The <code>ShrMgr</code> class implements the API methods for allocating, getting info,
* constructing and destructining shared memory region for
* inter-processor communication.
*
* @author Theng C. Moua
* @version 1.0, 10 September 2001
*/

#ifndef ShmManager_h
#define ShmManager_h 1
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const int MAX_MEM_SIZE = 16000;

class ShmManager
{
public:

//## Constructors (generated for simulation purpose)

/** Constructor for ShmManager
* Parameters are not required
*/

ShmManager()
{

base_addr = new unsigned short [MAX_MEM_SIZE];

current_addr = base_addr; // this is the VME-base address
current_size = 0;
count = 0;

};

//## Destructor (generated)

/** Destructor for ShmManager
* Parameters are not required
*/

~ShmManager()
{

delete [] base_addr;
};

/** Allocate shared memory regionfrom ShmManager
* @param m_shm_size is the size of the shared memory region requesting
* @param status is the status pass by pointer to allocate of a shared memory
* region. The return value indicare success (1) or failure (0).
*/

static unsigned short* allocate(unsigned short m_shm_size, unsigned short* status)
{

if ( (current_size + m_shm_size) > MAX_MEM_SIZE )
*status = 0; //fail

else
{

current_size += m_shm_size;
current_addr += m_shm_size;
*status = 1; //sucess
count++;

}

return current_addr;
};

/** Get number of region from ShmManager
* @return <tt>true</tt> if internal states are successfully get the info.
*/

static unsigned short ShmManager::getTotalShmObject()
{

return count;
}

private: //## implementation
// Data Members for Class Attributes

unsigned short *base_addr;
static unsigned short *current_addr;
static unsigned int current_size;
static unsigned short count;
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};

// Class ShmManager

unsigned short ShmManager::count = 0; // definition of count
unsigned short* ShmManager::current_addr; // definition of current_address
unsigned int ShmManager::current_size = 0; // definition of current_size

#endif

6. DevcType.h 
/**
* The <code>DecvType</code> class defines the type of devices for the
* inter-processor communication.
*
* @author Theng C. Moua
* @version 1.0, 10 September 2001
*/

typedef enum { Sharedmem, DMA, Ethernet, Serial, Mil_1553 } DeviceType;
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